COMBINATORICS AND TOPOLOGY OF LINE ARRANGEMENTS IN THE COMPLEX PROJECTIVE PLANE

被引:0
|
作者
ARTALBARTOLO, E [1 ]
机构
[1] UNIV ZARAGOZA,DEPT MATEMAT,E-50009 ZARAGOZA,SPAIN
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use some results about Betti numbers of coverings of complements of plane projective curves to discuss the problem of how combinatories determine the topology of line arrangement, finding a counterexample to a conjecture of Orlik.
引用
收藏
页码:385 / 390
页数:6
相关论文
共 50 条
  • [1] Topology and combinatorics of real line arrangements
    Bartolo, EA
    Ruber, JC
    Agustín, JIC
    Buzunáriz, MM
    COMPOSITIO MATHEMATICA, 2005, 141 (06) : 1578 - 1588
  • [2] Real and complex supersolvable line arrangements in the projective plane
    Krishna Hanumanthu
    Brian Harbourne
    Journal of Algebraic Combinatorics, 2021, 54 : 767 - 785
  • [3] Conic-Line Arrangements in the Complex Projective Plane
    Pokora, Piotr
    Szemberg, Tomasz
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 69 (04) : 1121 - 1138
  • [4] Conic-Line Arrangements in the Complex Projective Plane
    Piotr Pokora
    Tomasz Szemberg
    Discrete & Computational Geometry, 2023, 69 : 1121 - 1138
  • [5] Real and complex supersolvable line arrangements in the projective plane
    Hanumanthu, Krishna
    Harbourne, Brian
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 54 (03) : 767 - 785
  • [6] ARRANGEMENTS OF CURVES IN THE PLANE - TOPOLOGY, COMBINATORICS, AND ALGORITHMS
    EDELSBRUNNER, H
    GUIBAS, L
    PACH, J
    POLLACK, R
    SEIDEL, R
    SHARIR, M
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 317 : 214 - 229
  • [7] ARRANGEMENTS OF CURVES IN THE PLANE TOPOLOGY, COMBINATORICS, AND ALGORITHMS
    EDELSBRUNNER, H
    GUIBAS, L
    PACH, J
    POLLACK, R
    SEIDEL, R
    SHARIR, M
    THEORETICAL COMPUTER SCIENCE, 1992, 92 (02) : 319 - 336
  • [8] Straight line arrangements in the real projective plane
    Forge, D
    Alfonsin, JLR
    DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 20 (02) : 155 - 161
  • [9] Straight line arrangements in the real projective plane
    D. Forge
    J. L. Ramírez Alfonsín
    Discrete & Computational Geometry, 1998, 20 : 155 - 161
  • [10] Lectures on arrangements: Combinatorics and topology
    Orlik, Peter
    ALGEBRAIC COMBINATORICS, 2007, : 1 - +