INVARIANT SUBSPACES OF THE DIRICHLET SHIFT AND PSEUDOCONTINUATIONS

被引:30
|
作者
RICHTER, S
SUNDBERG, C
机构
关键词
DIRICHLET SPACE; INVARIANT SUBSPACES; PSEUDOCONTINUATION; ANALYTIC CONTINUATION;
D O I
10.2307/2154587
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study extremal functions for invariant subspaces M of the Dirichlet shift, i.e., solutions phi of the extremal problem SUP{\f(n)(0)\/\\f\\D: f is-an-element-of M, f not-equal 0}. Here n is the smallest nonnegative integer such that the sup is positive. It is known that such a function phi generates M. We show that the derivative (zphi)' has a pseudocontinuation to the exterior disc. This pseudocontinuation is an analytic continuation exactly near those points of the unit circle where phi is bounded away from zero. We also show that the radial limit of the absolute value of an extremal function exists at every point of the unit circle. Some of our results are valid for all functions that are orthogonal to a nonzero invariant subspace.
引用
收藏
页码:863 / 879
页数:17
相关论文
共 50 条
  • [1] INVARIANT SUBSPACES OF THE DIRICHLET SHIFT
    RICHTER, S
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1988, 386 : 205 - 220
  • [2] Regularity for generators of invariant subspaces of the Dirichlet shift
    Richter, Stefan
    Yilmaz, Faruk
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (07) : 2117 - 2132
  • [3] Invariant Subspaces of the Dirichlet Space
    El-Fallah, Omar
    Kellay, Karim
    Ransford, Thomas
    HILBERT SPACES OF ANALYTIC FUNCTIONS, 2010, 51 : 133 - +
  • [4] Cyclicity and invariant subspaces in Dirichlet spaces
    El-Fallah, O.
    Elmadani, Y.
    Kellay, K.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (09) : 3262 - 3279
  • [5] On Invariant Subspaces for the Shift Operator
    Liu, Junfeng
    SYMMETRY-BASEL, 2019, 11 (06):
  • [6] Pseudocontinuations and the backward shift
    Aleman, A
    Richter, S
    Ross, WT
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1998, 47 (01) : 223 - 276
  • [7] Extremal functions and invariant subspaces in Dirichlet spaces
    El-Fallah, O.
    Elmadani, Y.
    Labghail, I.
    ADVANCES IN MATHEMATICS, 2022, 408
  • [8] On unitary equivalence of invariant subspaces of the Dirichlet space
    Guo, Kunyu
    Zhao, Liankuo
    STUDIA MATHEMATICA, 2010, 196 (02) : 143 - 150
  • [9] Hankel operators and invariant subspaces of the Dirichlet space
    Luo, Shuaibing
    Richter, Stefan
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 91 : 423 - 438
  • [10] Invariant subspaces of the Dirichlet space and commutative algebra
    Fang, X
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2004, 569 : 189 - 211