ON SHANK'S ALGORITHM FOR MODULAR SQUARE ROOTS

被引:0
|
作者
Schlage-Puchta, Jan-Christoph [1 ]
机构
[1] Math Inst, Eckerstr 1, D-79111 Freiburg, Germany
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime number, p = 2(n)q+ 1, where q is odd. D. Shanks described an algorithm to compute square roots (mod p) which needs O(log q + n(2)) modular multiplications. In this note we describe two modifications of this algorithm. The first needs only O(log q + n(3/2)) modular multiplications, while the second is a parallel algorithm which needs n processors and takes O(log q + n) time.
引用
收藏
页码:84 / 88
页数:5
相关论文
共 50 条
  • [1] On the distribution of modular square roots of primes
    Shkredov, Ilya D.
    Shparlinski, Igor E.
    Zaharescu, Alexandru
    MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (03)
  • [2] On the distribution of modular square roots of primes
    Ilya D. Shkredov
    Igor E. Shparlinski
    Alexandru Zaharescu
    Mathematische Zeitschrift, 2024, 306
  • [3] Integer factoring and modular square roots
    Jerabek, Emil
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2016, 82 (02) : 380 - 394
  • [4] 8086 ALGORITHM SOLVES SQUARE ROOTS
    SREEDHARAN, J
    DHURKADAS, A
    EDN MAGAZINE-ELECTRICAL DESIGN NEWS, 1985, 30 (07): : 272 - 272
  • [5] ALGORITHM FOR INVERSE SQUARE-ROOTS.
    Modi, J.J.
    Rollett, J.S.
    Cambridge University, Engineering Department, (Technical Report) CUED/F-CAMS, 1984,
  • [6] Chaotic roots of the modular multiplication dynamical system in Shor's algorithm
    Patoary, Abu Musa
    Vikram, Amit
    Shou, Laura
    Galitski, Victor
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [7] AN ALGORITHM FOR INVERSE SQUARE-ROOTS
    MODI, JJ
    ROLLETT, JS
    PARALLEL COMPUTING, 1985, 2 (01) : 69 - 71
  • [8] Bilinear forms in Weyl sums for modular square roots and applications
    Dunn, Alexander
    Kerr, Bryce
    Shparlinski, Igor E.
    Zaharescu, Alexandru
    ADVANCES IN MATHEMATICS, 2020, 375
  • [9] Mersenne's challenge and square roots
    Cameron, John B.
    MATHEMATICAL GAZETTE, 2016, 100 (547): : 150 - 152
  • [10] Square Roots of Hermitian Matrices and a Rational Algorithm for Checking Their Congruence
    Kh. D. Ikramov
    Moscow University Computational Mathematics and Cybernetics, 2019, 43 (3) : 95 - 100