A distribution function F on the nonnegative halfline is called subexponential if lim(x ->infinity)(1-F*(n)(x))/(1-F(x)) = n for all n >= 2. We obtain new sufficient conditions for subexponential distributions and related classes of distribution functions. Our results are formulated in terms of the hazard rate. We also analyze the rate of convergence in the definition and discuss the asymptotic behaviour of the remainder term R-n(x) = 1-F*(n)(x)-n(1-F(x)). We use the results in studying subordinated distributions and we conclude the paper with some multivariate extensions of our results.
机构:
Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USA
Cornell Univ, Dept Stat Sci, Ithaca, NY 14853 USACornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USA
Samorodnitsky, Gennady
Sun, Julian
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USACornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USA