HAZARD RATES AND SUBEXPONENTIAL DISTRIBUTIONS

被引:13
|
作者
Baltrunas, A. [1 ]
Omey, E. [2 ]
Van Gulck, S. [2 ]
机构
[1] Inst Math & Informat, Vilnius, Lithuania
[2] EHSAL, B-1000 Brussels, Belgium
来源
关键词
regular variation; O-regular variation; univariate and multivariate subexponential distributions; hazard rate; subordination;
D O I
10.2298/PIM0694029B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A distribution function F on the nonnegative halfline is called subexponential if lim(x ->infinity)(1-F*(n)(x))/(1-F(x)) = n for all n >= 2. We obtain new sufficient conditions for subexponential distributions and related classes of distribution functions. Our results are formulated in terms of the hazard rate. We also analyze the rate of convergence in the definition and discuss the asymptotic behaviour of the remainder term R-n(x) = 1-F*(n)(x)-n(1-F(x)). We use the results in studying subordinated distributions and we conclude the paper with some multivariate extensions of our results.
引用
收藏
页码:29 / 46
页数:18
相关论文
共 50 条