INFINITE GROUPS WITH TWO CONJUGACY CLASSES OF NON-SUBNORMAL SUBGROUPS

被引:0
|
作者
Feng, Aifang [1 ]
Liu, Zuhua [1 ]
机构
[1] Kunming Univ, Dept Math, Kunming 650214, Peoples R China
关键词
non-subnormal subgroup; conjugacy class; locally nilpotent; locally finite;
D O I
10.17654/NT038050489
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be an infinite group. mu denotes the number of the conjugacy classes of non-subnormal subgroups of G. mu(<infinity) and mu(infinity) denote the number of the finitely length and infinitely length conjugacy classes of non-subnormal subgroups of G, respectively. Let G be a group with mu = 2. Then it is proved that (1) there exists no infinite group with mu(<infinity) = 2; (2) if mu(<infinity) = mu(infinity) = 1, then there exists some normal subgroup N angle G, such that G/N is a finite non-nilpotent inner-abelian group, where N is a group with all subgroups subnormal; (3) if G is infinite locally finite, then G is a Baer group, and mu(infinity) = 2.
引用
收藏
页码:489 / 497
页数:9
相关论文
共 50 条
  • [1] Groups with finite conjugacy classes of non-subnormal subgroups
    S. Franciosi
    F. de Giovanni
    L.A. Kurdachenko
    Archiv der Mathematik, 1998, 70 : 169 - 181
  • [2] Groups with finite conjugacy classes of non-subnormal subgroups
    Franciosi, S
    De Giovanni, F
    Kurdachenko, LA
    ARCHIV DER MATHEMATIK, 1998, 70 (03) : 169 - 181
  • [3] Non-subnormal subgroups of groups
    Zarrin, Mohammad
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (05) : 851 - 853
  • [4] Groups of infinite rank with finite conjugacy classes of subnormal subgroups
    De Falco, M.
    de Giovanni, F.
    Musella, C.
    Trabelsi, N.
    JOURNAL OF ALGEBRA, 2015, 431 : 24 - 37
  • [5] Finite Groups Having Exactly Two Conjugate Classes of Non-subnormal Subgroups
    Feng, Aifang
    Liu, Zuhua
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (09) : 3840 - 3847
  • [6] INFINITE GROUPS WITH ONE CONJUGATE CLASS OF NON-SUBNORMAL SUBGROUPS
    Liu, Zuhua
    Feng, Aifang
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2013, 29 (01): : 83 - 90
  • [7] On finite groups with non-subnormal subgroups
    Lu, Jiakuan
    Meng, Wei
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (05) : 2043 - 2046
  • [8] Groups with small deviation for non-subnormal subgroups
    Kurdachenko, Leonid A.
    Smith, Howard
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2009, 7 (02): : 186 - 199
  • [9] A NOTE ON GROUPS WITH FINITE CONJUGACY CLASSES OF SUBNORMAL SUBGROUPS
    de Giovanni, Francesco
    Saccomanno, Federica
    MATHEMATICA SLOVACA, 2017, 67 (02) : 387 - 390
  • [10] GROUPS WITH FINITELY MANY NORMALIZERS OF NON-SUBNORMAL SUBGROUPS
    De Mari, Fausto
    De Giovanni, Francesco
    MATEMATICHE, 2007, 62 (01): : 3 - 13