A MIXED PROBLEM FOR QUASILINEAR PSEUDO-HYPERBOLIC EQUATIONS WITH INTEGRAL NON-LINEARITY

被引:0
|
作者
Aliyev, Akbar B. [1 ]
Suleymanov, Nurbala A. [1 ]
机构
[1] NAS Azerbaijan, Inst Math & Mech, 9 F Agayev Str, AZ-1141 Baku, Azerbaijan
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper we consider a mixed problem for a class of quasilear pseudo-hyperbolic equations of higher order with integral non-linearity. A theorem on global solvability is proved for small initial data.
引用
收藏
页码:39 / 44
页数:6
相关论文
共 50 条
  • [1] Hyperbolic and pseudo-hyperbolic equations in the theory of vibration
    Fedotov, Igor
    Shatalov, Michael
    Marais, Julian
    ACTA MECHANICA, 2016, 227 (11) : 3315 - 3324
  • [2] Hyperbolic and pseudo-hyperbolic equations in the theory of vibration
    Igor Fedotov
    Michael Shatalov
    Julian Marais
    Acta Mechanica, 2016, 227 : 3315 - 3324
  • [3] Splitting positive definite mixed element methods for pseudo-hyperbolic equations
    Liu, Yang
    Li, Hong
    Wang, Jinfeng
    He, Siriguleng
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (02) : 670 - 688
  • [4] Global weak solutions of the Cauchy problem for semilinear pseudo-hyperbolic equations
    A. B. Aliev
    A. A. Kazymov
    Differential Equations, 2009, 45 : 175 - 185
  • [5] Global Weak Solutions of the Cauchy Problem for Semilinear Pseudo-Hyperbolic Equations
    Aliev, A. B.
    Kazymov, A. A.
    DIFFERENTIAL EQUATIONS, 2009, 45 (02) : 175 - 185
  • [6] A MIXED PROBLEM FOR A NONHOMOGENEOUS QUASILINEAR HYPERBOLIC SYSTEM OF EQUATIONS
    LYAPIDEVSKII, VY
    MATHEMATICS OF THE USSR-SBORNIK, 1983, 120 (1-2): : 201 - 210
  • [7] Modified Integral Transform for Solving Benney-Luke and Singular Pseudo-Hyperbolic Equations
    Elzaki, Tarig M.
    Chamekh, Mourad
    Ahmed, Shams A.
    ACTA MECHANICA ET AUTOMATICA, 2024, 18 (01) : 139 - 143
  • [8] On a class of integral equations of Urysohn type with strong non-linearity
    Khachatryan, Kh A.
    IZVESTIYA MATHEMATICS, 2012, 76 (01) : 163 - 189
  • [9] A new splitting H1-Galerkin mixed method for pseudo-hyperbolic equations
    Liu, Yang
    Wang, Jinfeng
    Li, Hong
    Gao, Wei
    He, Siriguleng
    World Academy of Science, Engineering and Technology, 2011, 51 : 1444 - 1449
  • [10] Ad galerkin analysis for nonlinear pseudo-hyperbolic equations
    Xia, C
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2003, 21 (02) : 125 - 134