GALOIS-GROUPS AND THE MULTIPLICATIVE STRUCTURE OF FIELD-EXTENSIONS

被引:14
|
作者
GURALNICK, R [1 ]
WIEGAND, R [1 ]
机构
[1] UNIV NEBRASKA,DEPT MATH,LINCOLN,NE 68588
关键词
MULTIPLICATIVE GROUP OF A FIELD; GALOIS GROUP; REPRESENTATION; CHARACTER; FINITE SIMPLE GROUP;
D O I
10.2307/2154128
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K/k be a finite Galois field extension, and assume k is not an algebraic extension of a finite field. Let K* be the multiplicative group of K, and let THETA(K/k) be the product of the multiplicative groups of the proper intermediate fields. The condition that the quotient group GAMMA = K */THETA(K/k) be torsion is shown to depend only on the Galois group G. For algebraic number fields and function fields, we give a complete classification of those G for which GAMMA is nontrivial.
引用
收藏
页码:563 / 584
页数:22
相关论文
共 50 条