This paper examines the influence of process variables on final thickness distributions for vacuum-formed thermoplastic parts. The process variables investigated include evacuation rate, sheet surface temperature, mold temperature, and material slip over the mold surface. The experimental data presented include, in addition to thicknesses, sheet surface temperature obtained via infrared thermography. A finite element program to model the vacuum-forming process is discussed. and the wall thickness distribution predicted by this program for a vacuum-formed part is compared with the results of the experiments.