OPTIMAL UNSUPERVISED MOTOR LEARNING FOR DIMENSIONALITY REDUCTION OF NONLINEAR CONTROL-SYSTEMS

被引:11
|
作者
SANGER, TD
机构
[1] NASA Jet Propulsion Laboratory, Pasadena, CA
来源
基金
美国国家卫生研究院;
关键词
D O I
10.1109/72.329694
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, optimal unsupervised motor learning is defined to be a technique for finding the coordinate system of minimum dimensionality which can adequately describe a particular motor task. An explicit method is provided for learning a stable controller that translates commands within the new coordinate system into motor variables appropriate for plant control. The method makes use of previously described Neural Network algorithms including the Generalized Hebbian Algorithm [1], Basis-Function Trees [2], and Trajectory Extension Learning [3]. Examples of applications to a real direct-drive two joint planar robot arm and a simulated three joint robot arm with visual sensing are given.
引用
收藏
页码:965 / 973
页数:9
相关论文
共 50 条
  • [1] ON THE THEORY OF OPTIMAL PROCESSES IN THE NONLINEAR CONTROL-SYSTEMS
    MARTYNENKO, VV
    DOKLADY AKADEMII NAUK SSSR, 1989, 305 (04): : 794 - 798
  • [2] OPTIMAL DISTURBANCE REJECTION FOR NONLINEAR CONTROL-SYSTEMS
    DEFIGUEIREDO, RJP
    CHEN, GR
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (12) : 1242 - 1248
  • [3] REDUCTION OF NONLINEAR INFLUENCES IN HYDRAULIC CONTROL-SYSTEMS
    ALTHAUS, J
    ULBRICH, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1991, 71 (04): : T167 - T170
  • [4] OPTIMAL PROBLEMS FOR NONLINEAR PARABOLIC BOUNDARY CONTROL-SYSTEMS
    FATTORINI, HO
    MURPHY, T
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1994, 32 (06) : 1577 - 1596
  • [5] SYNTHESIS OF OPTIMAL NONLINEAR DISCRETE CONTROL-SYSTEMS WITH FEEDBACK
    KUNTSEVICH, VM
    LYCHAK, MM
    AUTOMATION AND REMOTE CONTROL, 1976, 37 (09) : 1362 - 1371
  • [6] Manifold Learning in MR spectroscopy using nonlinear dimensionality reduction and unsupervised clustering
    Yang, Guang
    Raschke, Felix
    Barrick, Thomas R.
    Howe, Franklyn A.
    MAGNETIC RESONANCE IN MEDICINE, 2015, 74 (03) : 868 - 878
  • [7] STATE STEERING BY LEARNING FOR A CLASS OF NONLINEAR CONTROL-SYSTEMS
    LUCIBELLO, P
    AUTOMATICA, 1994, 30 (09) : 1463 - 1468
  • [8] Adaptive Flexible Optimal Graph for Unsupervised Dimensionality Reduction
    Chen, Hong
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 2162 - 2166
  • [9] OPTIMAL-CONTROL OF STOCHASTIC PARAMETRICALLY AND EXTERNALLY EXCITED NONLINEAR CONTROL-SYSTEMS
    YOUNG, GE
    CHANG, RJ
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1988, 110 (02): : 114 - 119
  • [10] Original Approach for Reduction of High Dimensionality In unsupervised learning
    Fidae, Harchli
    Abdelatif, Es-safi
    Mohamed, Ettaouil
    PROCEEDINGS OF THE 3RD IEEE INTERNATIONAL CONFERENCE ON LOGISTICS OPERATIONS MANAGEMENT (GOL'16), 2016,