THE LINDSAY TRANSFORM OF NATURAL EXPONENTIAL-FAMILIES

被引:9
|
作者
KOKONENDJI, CC
SESHADRI, V
机构
[1] UNIV TOULOUSE 3,F-31062 TOULOUSE,FRANCE
[2] MCGILL UNIV,MONTREAL H3A 2T5,QUEBEC,CANADA
关键词
CONVOLUTION; CUBIC VARIANCE; EXPONENTIAL FAMILIES; INFINITELY DIVISIBLE MEASURES; LEVY MEASURES; NATURAL EXPONENTIAL FAMILIES; VARIANCE FUNCTIONS;
D O I
10.2307/3315588
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let mu be an infinitely divisible positive measure on R. If the measure rho(mu) is such that x-2[rho(mu(dx)-rho(mu({0})delta0(dx)] is the Levy measure associated with mu and is infinitely divisible, we consider for all positive reals alpha and beta the measure T(alpha,beta)(mu) which is the convolution of mu(alpha) and rho(mu)beta. For example, if mu is the inverse Gaussian law, then rho(mu) is a gamma law with parameter 3/2. Then T(alpha,beta)(mu) is an extension of the Lindsay transform of the first order, restricted to the distributions which are infinitely divisible. The main aim of this paper is to point out that it is possible to apply this transformation to all natural exponential families (NEF) with strictly cubic variance functions P. We then obtain NEF with variance functions of the form square-root DELTAP(square-root DELTA), where DELTA is an affine function of the mean of the NEF. Some of these latter types appear scattered in the literature.
引用
收藏
页码:259 / 272
页数:14
相关论文
共 50 条
  • [1] REPRODUCIBLE NATURAL EXPONENTIAL-FAMILIES
    BARLEV, SK
    CASALIS, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (12): : 1323 - 1326
  • [2] PREDICTIVE FIT FOR NATURAL EXPONENTIAL-FAMILIES
    HARRIS, IR
    BIOMETRIKA, 1989, 76 (04) : 675 - 684
  • [3] FINITE MIXTURES OF NATURAL EXPONENTIAL-FAMILIES
    SESHADRI, V
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1991, 19 (04): : 437 - 445
  • [4] NATURAL EXPONENTIAL-FAMILIES WITH QUADRATIC VARIANCE FUNCTIONS
    MORRIS, CN
    ANNALS OF STATISTICS, 1982, 10 (01): : 65 - 80
  • [5] NATURAL EXPONENTIAL-FAMILIES AND SELF-DECOMPOSABILITY
    BARLEV, SK
    BSHOUTY, D
    LETAC, G
    STATISTICS & PROBABILITY LETTERS, 1992, 13 (02) : 147 - 152
  • [6] ON THE PROPERTIES OF NATURAL EXPONENTIAL-FAMILIES OF QUADRATIC VARIANCE
    JORGENSEN, B
    LETAC, G
    SESHADRI, V
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1989, 17 (01): : 1 - 8
  • [7] RECIPROCITY BETWEEN NATURAL EXPONENTIAL-FAMILIES ON R
    LETAC, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 303 (02): : 61 - 64
  • [8] ORTHOGONAL POLYNOMIALS ASSOCIATED WITH NATURAL EXPONENTIAL-FAMILIES
    LABEYEVOISIN, E
    POMMERET, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (01): : 79 - 84
  • [9] NATURAL EXPONENTIAL-FAMILIES INVARIANT BY A GROUP OF TRANSLATIONS
    CASALIS, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (11): : 621 - 623
  • [10] STATIONARY EXPONENTIAL-FAMILIES
    DINWOODIE, IH
    ANNALS OF STATISTICS, 1995, 23 (01): : 327 - 337