A NUMERICAL RESOLUTION STUDY OF HIGH-ORDER ESSENTIALLY NONOSCILLATORY SCHEMES APPLIED TO INCOMPRESSIBLE-FLOW

被引:0
|
作者
E, WN [1 ]
SHU, CW [1 ]
机构
[1] BROWN UNIV,DIV APPL MATH,PROVIDENCE,RI 02912
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:39 / 46
页数:8
相关论文
共 50 条
  • [1] High-order unstructured essentially nonoscillatory and weighted essentially nonoscillatory schemes for aerodynamic flows
    Wolf, William R.
    Azevedo, Joao Luiz F.
    AIAA JOURNAL, 2006, 44 (10) : 2295 - 2310
  • [2] High-order unstructured essentially nonoscillatory and weighted essentially nonoscillatory schemes for aerodynamic flows
    Wolf, William R.
    Azevedo, João Luiz F.
    AIAA Journal, 2006, 44 (10): : 2295 - 2310
  • [3] Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes for compressible flows with high Reynolds numbers
    Zhang, YT
    Shi, J
    Shu, CW
    Zhou, Y
    PHYSICAL REVIEW E, 2003, 68 (04):
  • [4] Evaluation of two high-order weighted essentially nonoscillatory schemes
    Nichols, Robert H.
    Tramel, Robert W.
    Buning, Pieter G.
    AIAA Journal, 2008, 46 (12): : 3090 - 3102
  • [5] Evaluation of Two High-Order Weighted Essentially Nonoscillatory Schemes
    Nichols, Robert H.
    Tramel, Robert W.
    Buning, Pieter G.
    AIAA JOURNAL, 2008, 46 (12) : 3090 - 3102
  • [6] SOME RESULTS ON UNIFORMLY HIGH-ORDER ACCURATE ESSENTIALLY NONOSCILLATORY SCHEMES
    HARTEN, A
    OSHER, S
    ENGQUIST, B
    CHAKRAVARTHY, SR
    APPLIED NUMERICAL MATHEMATICS, 1986, 2 (3-5) : 347 - 377
  • [7] Comparison of two formulations for high-order accurate essentially nonoscillatory schemes
    Casper, Jay, 1970, AIAA, Washington, DC, United States (32):
  • [8] Using high-order accurate essentially nonoscillatory schemes for aeroacoustic applications
    Casper, J
    Meadows, KR
    AIAA JOURNAL, 1996, 34 (02) : 244 - 250
  • [9] HIGH-ORDER ESSENTIALLY NONOSCILLATORY SCHEMES FOR HAMILTON-JACOBI EQUATIONS
    OSHER, S
    SHU, CW
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (04) : 907 - 922
  • [10] UNIFORMLY HIGH-ORDER ACCURATE ESSENTIALLY NONOSCILLATORY SCHEMES .3.
    HARTEN, A
    ENGQUIST, B
    OSHER, S
    CHAKRAVARTHY, SR
    JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 71 (02) : 231 - 303