ORBITS OF ARCS IN PG(N, K) UNDER PROJECTIVITIES

被引:0
|
作者
GORDON, CE [1 ]
机构
[1] CALIF STATE UNIV LOS ANGELES,DEPT MATH & COMP SCI,LOS ANGELES,CA 90032
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The symmetric group on k symbols is made to operate on a certain set of matrices in such a way that its orbits are in one-to-one correspondence with the orbits of the k-arcs of an N-dimensional projective space under the group of projectivities. This leads to a formula for the number of such orbits.
引用
收藏
页码:187 / 203
页数:17
相关论文
共 50 条
  • [1] COMPLETE K-ARCS IN PG(N, Q), Q EVEN
    STORME, L
    THAS, JA
    DISCRETE MATHEMATICS, 1992, 106 : 455 - 469
  • [2] Weighted (k,n)-arcs of Type (n- q,n) and Maximum Size of (h,m)-arcs in PG(2,q)
    Yaseen, Mustafa T.
    Ali, Ali Hasan
    Shanan, Ibrahim A.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (03): : 361 - 368
  • [3] Constructing linear codes from some orbits of projectivities
    Maruta, Tatsuya
    Shinohara, Maori
    Takenaka, Mito
    DISCRETE MATHEMATICS, 2008, 308 (5-6) : 832 - 841
  • [4] NOTE ON (K,N)-ARCS
    WILSON, BJ
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1974, 76 : 57 - 59
  • [5] A note on (k,n)-arcs
    Voloch, JF
    DISCRETE MATHEMATICS, 2005, 294 (1-2) : 223 - 224
  • [6] On Generalized k-Arcs in $ \Bbb {PG} $(2n, q)
    B.N. Cooperstein
    J.A. Thas
    Annals of Combinatorics, 2001, 5 (2) : 141 - 152
  • [7] SUR CERTAINS (K, N)-ARCS
    DORGEVAL, B
    BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1967, 53 (03): : 178 - &
  • [8] LOWER BOUNDS FOR COMPLETE [K; N]-ARCS
    BRUEN, AA
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1982, 33 (01) : 109 - 111
  • [9] Classification of the (n, 3)-arcs in PG(2, 7)
    Marcugini S.
    Milani A.
    Pambianco F.
    Journal of Geometry, 2004, 80 (1-2) : 179 - 184
  • [10] Maximal (n, 3)-arcs in PG(2, 11)
    Marcugini, Stefano
    Milani, Alfredo
    Pambianco, Fernanda
    Discrete Mathematics, 1999, 208-209 : 421 - 426