SEQUENTIAL IMPUTATIONS AND BAYESIAN MISSING DATA PROBLEMS

被引:630
|
作者
KONG, A [1 ]
LIU, JS [1 ]
WONG, WH [1 ]
机构
[1] HARVARD UNIV,DEPT STAT,CAMBRIDGE,MA 02138
关键词
BAYESIAN INFERENCE; IMPORTANCE SAMPLING; MISSING DATA; PREDICTIVE DISTRIBUTION; SEQUENTIAL IMPUTATION;
D O I
10.2307/2291224
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For missing data problems, Tanner and Wong have described a data augmentation procedure that approximates the actual posterior distribution of the parameter vector by a mixture of complete data posteriors. Their method of constructing the complete data sets is closely related to the Gibbs sampler. Both required iterations, and, similar to the EM algorithm, convergence can be slow. We introduce in this article an alternative procedure that involves imputing the missing data sequentially and computing appropriate importance sampling weights. In many applications this new procedure works very well without the need for iterations. Sensitivity analysis, influence analysis. and updating with new data can be performed cheaply. Bayesian prediction and model selection can also be incorporated. Examples taken from a wide range of applications are used for illustration.
引用
收藏
页码:278 / 288
页数:11
相关论文
共 50 条
  • [1] Multiple imputations for missing data: a simulation with epidemiological data
    Nunes, Luciana Neves
    Klueck, Mariza Machado
    Guimaraes Fachel, Jandyra Maria
    CADERNOS DE SAUDE PUBLICA, 2009, 25 (02): : 268 - 278
  • [2] Convergence Analysis of Multiple Imputations Particle Filters for dealing with Missing Data in Nonlinear Problems
    Zhang, X. -P.
    Khwaja, A. S.
    Luo, J. -A.
    Housfater, A. S.
    Anpalagan, A.
    2014 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2014, : 2567 - 2570
  • [3] What Improves with Increased Missing Data Imputations?
    Bodner, Todd E.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2008, 15 (04) : 651 - 675
  • [4] A note on determining the number of imputations for missing data
    Hershberger, SL
    Fisher, DG
    STRUCTURAL EQUATION MODELING, 2003, 10 (04): : 648 - 650
  • [5] Bayesian methods for dealing with missing data problems
    Zhihua Ma
    Guanghui Chen
    Journal of the Korean Statistical Society, 2018, 47 : 297 - 313
  • [6] Bayesian methods for dealing with missing data problems
    Ma, Zhihua
    Chen, Guanghui
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2018, 47 (03) : 297 - 313
  • [7] Scaling Out Big Data Missing Value Imputations
    Anagnostopoulos, Christos
    Triantafillou, Peter
    PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 651 - 660
  • [8] Missing data, part 5. Introduction to multiple imputations
    Pham, Tra My
    Pandis, Nikolaos
    White, Ian R.
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2022, 162 (04) : 581 - 583
  • [9] Inverse probability weighting or multiple imputations for nonmonotone missing data?
    Ross, Rachael
    Cole, Stephen
    Westreich, Daniel
    Daniels, Julie
    Stringer, Jeffrey
    Edwards, Jessie
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2022, 31 : 3 - 3
  • [10] Linking missing data to study outcomes using multiple imputations
    Ibrahim, Khadija
    CANADIAN JOURNAL OF PUBLIC HEALTH-REVUE CANADIENNE DE SANTE PUBLIQUE, 2015, 106 (02): : E82 - E82