WELL-POSEDNESS OF INVERSE STURM-LIOUVILLE PROBLEMS

被引:9
|
作者
HOCHSTADT, H [1 ]
机构
[1] POLYTECH INST BROOKLYN,BROOKLYN,NY 11201
关键词
D O I
10.1016/0022-0396(77)90119-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:402 / 413
页数:12
相关论文
共 50 条
  • [1] Well-Posedness of Inverse Sturm-Liouville Problem with Fractional Derivative
    Koyunbakan, Hikmet
    Shah, Kamal
    Abdeljawad, Thabet
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (01)
  • [2] Well-posedness of the inverse Sturm-Liouville problem with indecomposable boundary conditions
    Sadovnichii, AVA
    Sultanaev, YT
    Akhtyamov, AM
    DOKLADY MATHEMATICS, 2004, 69 (02) : 253 - 256
  • [3] Well-Posedness of Inverse Sturm–Liouville Problem with Fractional Derivative
    Hikmet Koyunbakan
    Kamal Shah
    Thabet Abdeljawad
    Qualitative Theory of Dynamical Systems, 2023, 22
  • [4] INVERSE STURM-LIOUVILLE PROBLEMS
    HOCHSTADT, H
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A681 - A682
  • [5] Partial Inverse Sturm-Liouville Problems
    Bondarenko, Natalia P.
    MATHEMATICS, 2023, 11 (10)
  • [6] Inverse Sturm-Liouville problems with pseudospectral methods
    Altundag, H.
    Boeckmann, C.
    Taseli, H.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (07) : 1373 - 1384
  • [7] Inverse Sturm-Liouville problems with homogeneous delay
    Pikula, M. T.
    Vladicic, V. M.
    Nedic, D. D.
    SIBERIAN MATHEMATICAL JOURNAL, 2014, 55 (02) : 301 - 308
  • [8] Eigenparameter dependent inverse Sturm-Liouville problems
    McCarthy, CM
    Rundell, W
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2003, 24 (1-2) : 85 - 105
  • [9] Numerical algorithms for inverse Sturm-Liouville problems
    Xiaoying Jiang
    Xiaowen Li
    Xiang Xu
    Numerical Algorithms, 2022, 89 : 1287 - 1309
  • [10] INVERSE STURM-LIOUVILLE PROBLEMS WITH A SINGULARITY AT ZERO
    CARLSON, R
    INVERSE PROBLEMS, 1994, 10 (04) : 851 - 864