IGG FROM AMYOTROPHIC-LATERAL-SCLEROSIS PATIENTS INCREASES CURRENT THROUGH P-TYPE CALCIUM CHANNELS IN MAMMALIAN CEREBELLAR PURKINJE-CELLS AND IN ISOLATED CHANNEL PROTEIN IN LIPID BILAYER
被引:94
|
作者:
LLINAS, R
论文数: 0引用数: 0
h-index: 0
机构:BAYLOR COLL MED, DEPT NEUROL, HOUSTON, TX 77030 USA
LLINAS, R
SUGIMORI, M
论文数: 0引用数: 0
h-index: 0
机构:BAYLOR COLL MED, DEPT NEUROL, HOUSTON, TX 77030 USA
SUGIMORI, M
CHERKSEY, BD
论文数: 0引用数: 0
h-index: 0
机构:BAYLOR COLL MED, DEPT NEUROL, HOUSTON, TX 77030 USA
CHERKSEY, BD
SMITH, RG
论文数: 0引用数: 0
h-index: 0
机构:BAYLOR COLL MED, DEPT NEUROL, HOUSTON, TX 77030 USA
SMITH, RG
DELBONO, O
论文数: 0引用数: 0
h-index: 0
机构:BAYLOR COLL MED, DEPT NEUROL, HOUSTON, TX 77030 USA
DELBONO, O
STEFANI, E
论文数: 0引用数: 0
h-index: 0
机构:BAYLOR COLL MED, DEPT NEUROL, HOUSTON, TX 77030 USA
STEFANI, E
APPEL, S
论文数: 0引用数: 0
h-index: 0
机构:BAYLOR COLL MED, DEPT NEUROL, HOUSTON, TX 77030 USA
APPEL, S
机构:
[1] BAYLOR COLL MED, DEPT NEUROL, HOUSTON, TX 77030 USA
The effect of the IgG from amyotrophic lateral sclerosis (ALS) patients was tested on the voltage-dependent barium currents (I(Ba)) in mammalian dissociated Purkinje cells and in isolated P-type calcium channels in lipid bilayers. Whole cell clamp of Purkinje cells demonstrates that ALS IgG increases the amplitude of I(Ba) without modifying their voltage kinetics. This increased I(Ba) could be blocked by a purified nonpeptide toxin from Agelenopsis aperta venom (purified funnel-web spider toxin) or by a synthetic polyamine analog (synthetic funnel-web spider toxin) and by a peptide toxin from the same spider venom, omega-Aga-IVA. Similar results were obtained on single-channel recordings from purified P channel protein. The addition of ALS IgG increased single-channel I(Ba) open time without affecting slope conductance. The results described above were not seen with normal human IgG nor with boiled ALS IgG. It is concluded that ALS IgG enhances inward current through P-type calcium channels. Since P-type Ca2+ channels are present in motoneuron axon terminals, we propose that the enhanced calcium current triggered by ALS IgG may contribute to neuronal damage in ALS.