Groups {S, T} whose commutator subgroups are abelian

被引:0
|
作者
Brahana, H. R. [1 ]
机构
[1] Univ Illinois, Urbana, IL USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:386 / 396
页数:11
相关论文
共 50 条
  • [1] Commutator Invariant Subgroups of Abelian Groups
    Chekhlov, A. R.
    SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (05) : 926 - 934
  • [2] Commutator Invariant Subgroups of Abelian Groups
    A. R. Chekhlov
    Siberian Mathematical Journal, 2010, 51 : 926 - 934
  • [3] Groups whose commutator subgroups are of order two
    Miller, GA
    AMERICAN JOURNAL OF MATHEMATICS, 1938, 60 : 101 - 106
  • [4] ON 2-KNOT GROUPS WITH ABELIAN COMMUTATOR SUBGROUPS
    YOSHIKAWA, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 92 (02) : 305 - 310
  • [5] On Groups whose Subnormal Abelian Subgroups are Normal
    Kurdachenko, L. A.
    Otal, J.
    Subbotin, I. Ya
    ADVANCES IN GROUP THEORY AND APPLICATIONS, 2022, 14 : 67 - 94
  • [6] Groups whose subgroups are either abelian or pronormal
    Brescia, Mattia
    Ferrara, Maria
    Trombetti, Marco
    KYOTO JOURNAL OF MATHEMATICS, 2023, 63 (03) : 471 - 500
  • [7] FINITE GROUPS WHOSE SYLOW SUBGROUPS ARE ABELIAN
    BROSHI, AM
    JOURNAL OF ALGEBRA, 1971, 17 (01) : 74 - &
  • [8] Finite groups whose abelian subgroups are TI-subgroups
    Guo, Xiuyun
    Li, Shirong
    Flavell, Paul
    JOURNAL OF ALGEBRA, 2007, 307 (02) : 565 - 569
  • [9] FINITE P-GROUPS WHOSE COMMUTATOR SUBGROUPS ARE CYCLIC
    VANDERWAALL, RW
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1973, 76 (04): : 342 - 345
  • [10] Finite groups all of whose abelian subgroups are QTI-subgroups
    Qian, Guohua
    Tang, Feng
    JOURNAL OF ALGEBRA, 2008, 320 (09) : 3605 - 3611