Generalized Multiple Counting Jacobsthal Sequences of Fermat Pseudoprimes

被引:0
|
作者
Cilasun, M. Husrev [1 ]
机构
[1] Istanbul Tech Univ, Elect & Elect Fac, Emerging Circuits & Computat Grp, TR-80626 Istanbul, Turkey
关键词
Carmichael number; Fermat's little theorem; Binet formula; floor function; multiple-counting sequence; Fermat pseudoprime; Jacobsthal sequence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study involves definitions of regular and representational multiple-counting Jacobsthal sequences of Carmichael numbers. We introduce recurrence relations for multiple-counting Jacobsthal sequences and show their association with Fermat's little theorem. We also provide matrix representations and generalized I3inet formulas for defined sequences. This leads to a better understanding of how certain composite numbers are distributed among consecutive powers.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] On pseudoprimes related to generalized Lucas sequences
    Dresel, LAG
    FIBONACCI QUARTERLY, 1997, 35 (01): : 35 - 42
  • [2] Derivative sequences of generalized Jacobsthal and Jacobsthal-Lucas polynomials
    Djordjevic, GB
    FIBONACCI QUARTERLY, 2000, 38 (04): : 334 - 338
  • [3] Generalized Fermat, double Fermat and Newton sequences
    Du, BS
    Huang, SS
    Li, MC
    JOURNAL OF NUMBER THEORY, 2003, 98 (01) : 172 - 183
  • [4] The (s,t)-Generalized Jacobsthal Matrix Sequences
    Uygun, Sukran
    Uslu, Kemal
    COMPUTATIONAL ANALYSIS, AMAT 2015, 2016, 155 : 325 - 336
  • [5] Fermat test with Gaussian base and Gaussian pseudoprimes
    José María Grau
    Antonio M. Oller-Marcén
    Manuel Rodríguez
    Daniel Sadornil
    Czechoslovak Mathematical Journal, 2015, 65 : 969 - 982
  • [6] Fermat test with Gaussian base and Gaussian pseudoprimes
    Maria Grau, Jose
    Oller-Marcen, Antonio M.
    Rodriguez, Manuel
    Sadornil, Daniel
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (04) : 969 - 982
  • [7] Properties of counting function of pseudoprimes
    Mat'asovsky, Alexander
    Visnyai, Tomas
    MATHEMATICS, INFORMATION TECHNOLOGIES AND APPLIED SCIENCES 2016, 2016, : 56 - 61
  • [8] ON THE GENERALIZED FIBONACCI PSEUDOPRIMES
    DIPORTO, A
    FILIPPONI, P
    MONTOLIVO, E
    FIBONACCI QUARTERLY, 1990, 28 (04): : 347 - 354
  • [9] Bivariate Jacobsthal and Jacobsthal Lucas polynomial sequences
    Uygun, Sukran
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 21 (03): : 176 - 185
  • [10] ON JACOBSTHAL DIFFERENCE SEQUENCES
    Catarino, P.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2018, 87 (02): : 267 - 276