HIGHER-ORDER STROBOSCOPIC METHOD

被引:8
|
作者
ROTH, EA
机构
来源
关键词
D O I
10.1007/BF01601943
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:315 / 325
页数:11
相关论文
共 50 条
  • [1] HIGHER-ORDER MELNIKOV METHOD
    郭友中
    刘曾荣
    江霞妹
    韩志斌
    AppliedMathematicsandMechanics(EnglishEdition), 1991, (01) : 21 - 32
  • [2] HIGHER-ORDER APPROXIMATIONS IN WKB METHOD
    GAROLA, C
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1969, 64 (01): : 243 - +
  • [3] ON REIDER METHOD AND HIGHER-ORDER EMBEDDINGS
    BELTRAMETTI, M
    FRANCIA, P
    SOMMESE, AJ
    DUKE MATHEMATICAL JOURNAL, 1989, 58 (02) : 425 - 439
  • [4] Convergence and Dynamics of a Higher-Order Method
    Moysi, Alejandro
    Argyros, Ioannis K.
    Regmi, Samundra
    Gonzalez, Daniel
    Alberto Magrenan, A.
    Antonio Sicilia, Juan
    SYMMETRY-BASEL, 2020, 12 (03):
  • [5] Higher-order α-method in computational plasticity
    Hyungseop Shim
    KSCE Journal of Civil Engineering, 2005, 9 (3) : 255 - 259
  • [6] ON THE MONOTONICITY OF THE HIGHER-ORDER SCHULZ METHOD
    PETKOVIC, LD
    PETKOVIC, MS
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (09): : 455 - 456
  • [7] Higher-Order Intentionality and Higher-Order Acquaintance
    Benj Hellie
    Philosophical Studies, 2007, 134 : 289 - 324
  • [8] Higher-order intentionality and higher-order acquaintance
    Hellie, Benj
    PHILOSOPHICAL STUDIES, 2007, 134 (03) : 289 - 324
  • [9] A HIGHER-ORDER UPWIND METHOD FOR VISCOELASTIC FLOW
    Nonaka, Andrew
    Trebotich, David
    Miller, Gregory
    Graves, Daniel
    Colella, Phillip
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2009, 4 (01) : 57 - 83
  • [10] A DIRECT METHOD FOR COMPUTING HIGHER-ORDER FOLDS
    YANG, ZH
    KELLER, HB
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (02): : 351 - 361