Using support vector machine for characteristics prediction of hydraulic valve

被引:0
|
作者
Ma, Jian-Wei [1 ]
Wang, Fu-Ji [1 ]
Jia, Zhen-Yuan [1 ]
Wei, Wei-Li [1 ]
机构
[1] Dalian Univ Technol, Minist Educ, Key Lab Precis & Nontradit Machining Technol, Dalian 116024, Peoples R China
关键词
characteristics prediction; SVM; support vector machine; hydraulic valve; adaptive neuro-fuzzy inference system; ANN; artificial neural network;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Accurate prediction for the synthesis characteristics of a hydraulic valve plays an important role in decreasing the repair and reject rate of the hydraulic product. Recently, intelligence system approaches such as Artificial Neural Network (ANN) and neuro-fuzzy methods have been used successfully for system modelling. The major shortcomings of these approaches are that a large number of training data sets are needed or the training time is too long. Using Support Vector Machine (SVM) approaches would help to overcome these issues. In this study, the SVM approach was used to construct a hydraulic valve characteristics forecasting system. To illustrate the applicability and capability of the SVM, a specific hydraulic valve production was selected as a case study. The prediction results showed that the proposed prediction method was more applicable and has higher accuracy than adaptive neuro-fuzzy inference system (ANFIS) and ANN in predicting the synthesis characteristics of hydraulic valve.
引用
收藏
页码:287 / 295
页数:9
相关论文
共 50 条
  • [1] Hydraulic unit prediction using support vector machine
    Ali, Syed Shujath
    Nizamuddin, Syed
    Abdulraheem, Abdulazeez
    Hassan, Md Rafiul
    Hossain, M. Enamul
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2013, 110 : 243 - 252
  • [2] Prediction in marketing using the support vector machine
    Cui, DP
    Curry, D
    MARKETING SCIENCE, 2005, 24 (04) : 595 - 615
  • [3] Prediction using online support vector machine
    Zhang, ZL
    Guo, CG
    Yu, S
    Qi, DY
    Long, SQ
    ICTAI 2005: 17TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, : 451 - 456
  • [4] Prediction of Machine Tool Condition Using Support Vector Machine
    Wang, Peigong
    Meng, Qingfeng
    Zhao, Jian
    Li, Junjie
    Wang, Xiufeng
    9TH INTERNATIONAL CONFERENCE ON DAMAGE ASSESSMENT OF STRUCTURES (DAMAS 2011), 2011, 305
  • [5] Prediction of Field Hydraulic Conductivity of Clay Liners Using an Artificial Neural Network and Support Vector Machine
    Das, Sarat Kumar
    Samui, Pijush
    Sabat, Akshaya Kumar
    INTERNATIONAL JOURNAL OF GEOMECHANICS, 2012, 12 (05) : 606 - 611
  • [6] Rockburst prediction using evolutionary support vector machine
    Zhao, HB
    PROGRESS IN SAFETY SCIENCE AND TECHNOLOGY, VOL V, PTS A AND B, 2005, 5 : 494 - 498
  • [7] Prediction of the β-hairpins in proteins using support vector machine
    Hu, Xiu Zhen
    Li, Qian Zhong
    PROTEIN JOURNAL, 2008, 27 (02): : 115 - 122
  • [8] Prediction of the β-Hairpins in Proteins Using Support Vector Machine
    Xiu Zhen Hu
    Qian Zhong Li
    The Protein Journal, 2008, 27 : 115 - 122
  • [9] Prediction of nucleosome positioning using a support vector machine
    Bishop, Eric
    Tullius, Thomas D.
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2007, 24 (06): : 624 - 624
  • [10] WLAN Traffic Prediction Using Support Vector Machine
    Feng, Huifang
    Shu, Yantai
    Ma, Maode
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2009, E92B (09) : 2915 - 2921