A GEOMETRIC PROOF OF THE COMPLETENESS OF THE LUKASIEWICZ CALCULUS

被引:26
|
作者
PANTI, G
机构
关键词
D O I
10.2307/2275851
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a self-contained geometric proof of the completeness theorem for the infinite-valued sentential calculus of Lukasiewicz.
引用
收藏
页码:563 / 578
页数:16
相关论文
共 50 条
  • [1] Lukasiewicz μ-calculus
    Mio, Matteo
    Simpson, Alex
    FUNDAMENTA INFORMATICAE, 2017, 150 (3-4) : 317 - 346
  • [2] An Easy Completeness Proof for the Modal μ-Calculus on Finite Trees
    ten Cate, Balder
    Fontaine, Gaelle
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATIONAL STRUCTURES, PROCEEDINGS, 2010, 6014 : 161 - +
  • [3] Towards Completeness via Proof Search in the Linear Time μ-calculus
    Doumane, Amina
    Baelde, David
    Hirschi, Lucca
    Saurin, Alexis
    PROCEEDINGS OF THE 31ST ANNUAL ACM-IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2016), 2016, : 377 - 386
  • [4] Extracting the resolution algorithm from a completeness proof for the propositional calculus
    Constable, Robert
    Moczydlowski, Wojciech
    LOGICAL FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2007, 4514 : 147 - +
  • [5] A Completeness Proof for Bisimulation in the pi-calculus Using Isabelle
    Bengtson, Jesper
    Parrow, Joachim
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2007, 192 (01) : 61 - 75
  • [6] Extracting the resolution algorithm from a completeness proof for the propositional calculus
    Constable, Robert
    Moczydlowski, Wojciech
    ANNALS OF PURE AND APPLIED LOGIC, 2009, 161 (03) : 337 - 348
  • [7] Lukasiewicz mu-calculus
    Mio, Matteo
    Simpson, Alex
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2013, (126): : 87 - 104
  • [8] On a new proof of completeness of p. i. Propositional Calculus
    Lenzi, Domenico
    NOTE DI MATEMATICA, 2007, 27 (01): : 139 - 144
  • [9] THEOREM COUNTING + LUKASIEWICZ PROPOSITIONAL CALCULUS
    BEAVERS, MC
    TOPOI-AN INTERNATIONAL REVIEW OF PHILOSOPHY, 1994, 13 (01): : 61 - 65
  • [10] SIMPLE GAMES IN LUKASIEWICZ CALCULUS AND THEIR CORES
    Cintula, Petr
    Kroupa, Tomas
    KYBERNETIKA, 2013, 49 (03) : 404 - 419