PERFORMANCE OF EVACUATED TUBE SOLAR COLLECTOR USING WATER-BASED TITANIUM OXIDE NANOFLUID

被引:90
|
作者
Mahendran, M. [1 ]
Lee, G. C. [1 ]
Sharma, K. V. [2 ]
Shahrani, A. [1 ]
Bakar, R. A. [1 ]
机构
[1] Univ Malaysia Pahang, Fac Mech Engn, Pekan 26600, Pahang, Malaysia
[2] Jawaharlal Nehru Technol Univ Hyderabad, Hyderabad 500085, Andhra Pradesh, India
关键词
Solar Energy; Nanofluid; Evacuated Tube Solar Collector;
D O I
10.15282/jmes.3.2012.6.0028
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Experiments are undertaken to determine the efficiency of an evacuated tube solar collector using water-based Titanium Oxide (TiO2) nanofluid at the Pekan Campus (3 degrees 32' N, 103 degrees 25'E), Faculty of Mechanical Engineering, University Malaysia Pahang, for the conversion of solar thermal energy. Malaysia lies in the equatorial zone with an average daily solar insolation of more than 900 W/m(2), which can reach a maximum of 1200 W/m(2) for most of the year. Traditionally water is pumped through the collector at an optimum flow rate, for the extraction of solar thermal energy. If the outlet temperature of the water is high, further circulation of the water through the collector is useless. This is due to the low thermal conductivity of water of 0.6 W/m.K compared to metals which is many orders higher. Hence it is necessary to reduce the surface temperature either by pumping water at a higher flow rate or by enhancing the fluid's properties by the dispersion of nanoparticles. Pumping water at higher flow rates is not advantageous as the overall efficiency of the system is lowered. Liquids in which nanosized particles of metal or their oxides are dispersed in a base liquid such as water are known as 'Nanofluids'. This results in higher values of thermal conductivity compared to the base liquid. The thermal conductivity increases with the concentration and temperature of the nanofluid. The increase in thermal conductivity with temperature is advantageous for application in collectors as the solar insolation varies throughout the day, with a minimum in the morning reaching a maximum at 2.00p.m and reducing thereafter. The efficiency of the collector estimated using a TiO2 nanofluid of 0.3% concentration is about 0.73, compared to water which is about 0.58. The efficiency is enhanced by 16.7% maximum with 30-50nm sized TiO2 nanoparticles dispersed in the water, compared to the system working solely with water. The flow rate is fixed at 2.7 liters per minute for both liquids.
引用
收藏
页码:301 / 310
页数:10
相关论文
共 50 条
  • [1] THE EFFICIENCY ENHANCEMENT ON THE DIRECT FLOW EVACUATED TUBE SOLAR COLLECTOR USING WATER-BASED TITANIUM OXIDE NANOFLUIDS
    Mahendran, M.
    Ali, Tanti Z. S.
    Shahrani, A.
    Bakar, R. A.
    4TH MECHANICAL AND MANUFACTURING ENGINEERING, PTS 1 AND 2, 2014, 465-466 : 308 - 315
  • [2] Evacuated tube solar collector performance using CeO2/water nanofluid
    Sharafeldin, M. A.
    Grof, Gyula
    JOURNAL OF CLEANER PRODUCTION, 2018, 185 : 347 - 356
  • [3] Performance evaluation of evacuated tube solar collector using boron nitride nanofluid
    Kumar, Sumit
    Tiwari, Arun Kumar
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 53
  • [4] Experimental investigation on the heat transfer performance of evacuated tube solar collector using CuO nanofluid and water
    Woobin Kang
    Yunchan Shin
    Honghyun Cho
    Journal of Mechanical Science and Technology, 2019, 33 : 1477 - 1485
  • [5] Experimental investigation on the heat transfer performance of evacuated tube solar collector using CuO nanofluid and water
    Kang, Woobin
    Shin, Yunchan
    Cho, Honghyun
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2019, 33 (03) : 1477 - 1485
  • [6] Efficiency of evacuated tube solar collector using WO3/Water nanofluid
    Sharafeldin, M. A.
    Grof, Gyula
    RENEWABLE ENERGY, 2019, 134 : 453 - 460
  • [7] Thermal Performance of Nanofluid Flow Inside Evacuated Tube Solar Collector
    Yazdi, Mohammad H.
    Solomin, Evgeny
    Fudholi, Ahmad
    Divandari, Ghasem
    Sopian, Kamanizzaman
    Chong, Perk Lin
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2021, 39 (04) : 1262 - 1270
  • [8] Evacuated tube solar collector performance using copper nanofluid: Energy and environmental analysis
    Sharafeldin, M. A.
    Grof, Gyula
    Abu-Nada, Eiyad
    Mahian, Omid
    APPLIED THERMAL ENGINEERING, 2019, 162
  • [9] Thermal performance enhancement of an evacuated tube solar collector using graphene nanoplatelets nanofluid
    Iranmanesh, Soudeh
    Ong, Hwai Chyuan
    Ang, Bee Chin
    Sadeghinezhad, Emad
    Esmaeilzadeh, Alireza
    Mehrali, Mohammad
    JOURNAL OF CLEANER PRODUCTION, 2017, 162 : 121 - 129
  • [10] Experimental investigation of nickel-based nanofluid on the performance of evacuated tube solar collector
    Kumar, Sumit
    Tiwari, Arun Kumar
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2024,