FIXED POINT THEOREM AND APERIODIC TILINGS

被引:0
|
作者
Gurevich, Yuri [1 ]
机构
[1] Microsoft Res, Fdn Software Engn, One Microsoft Way, Redmond, WA 98052 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A new simple construction of an aperiodic tile set based on self-referential (fixed point) argument is proposed.
引用
收藏
页码:126 / 136
页数:11
相关论文
共 50 条
  • [1] Fixed Point and Aperiodic Tilings
    Durand, Bruno
    Romashchenko, Andrei
    Shen, Alexander
    DEVELOPMENTS IN LANGUAGE THEORY, PROCEEDINGS, 2008, 5257 : 276 - +
  • [2] Aperiodic tilings
    Shahar Mozes
    Inventiones mathematicae, 1997, 128 : 603 - 611
  • [3] Aperiodic tilings
    Mozes, S
    INVENTIONES MATHEMATICAE, 1997, 128 (03) : 603 - 611
  • [4] Relating diffraction and spectral data of aperiodic tilings: Towards a Bloch theorem
    Akkermans, Eric
    Don, Yaroslav
    Rosenberg, Jonathan
    Schochet, Claude L.
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 165
  • [5] Conway and Aperiodic Tilings
    Charles Radin
    The Mathematical Intelligencer, 2021, 43 : 15 - 20
  • [6] Aperiodic tilings and entropy
    Durand, Bruno
    Gamard, Guilhem
    Grandjean, Anael
    THEORETICAL COMPUTER SCIENCE, 2017, 666 : 36 - 47
  • [7] Conway and Aperiodic Tilings
    Radin, Charles
    MATHEMATICAL INTELLIGENCER, 2021, 43 (02): : 15 - 20
  • [8] A fixed point theorem
    Podesta, F
    ARCHIV DER MATHEMATIK, 1997, 68 (01) : 65 - 69
  • [9] 'FIXED POINT THEOREM'
    MOORE, R
    NEW ENGLAND REVIEW-MIDDLEBURY SERIES, 1990, 13 (01): : 77 - 77
  • [10] A FIXED POINT THEOREM
    BEGLE, EG
    ANNALS OF MATHEMATICS, 1950, 51 (03) : 544 - 550