PERIODIC POINTS, MULTIPLICITIES, AND DYNAMICAL UNITS

被引:0
|
作者
MORTON, P [1 ]
SILVERMAN, JH [1 ]
机构
[1] BROWN UNIV,DEPT MATH,PROVIDENCE,RI 02912
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:81 / 122
页数:42
相关论文
共 50 条
  • [1] Units: Remarkable points in dynamical systems
    Gallas, JAC
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1995, 222 (1-4) : 125 - 151
  • [2] Monotone dynamical systems with dense periodic points
    Lemmens, Bas
    van Gaans, Onno
    van Imhoff, Hent
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (11) : 5709 - 5715
  • [3] Periodic points and non-wandering points of continuous dynamical systems
    Vesentini, E
    ADVANCES IN MATHEMATICS, 1998, 134 (02) : 308 - 327
  • [4] Remarks on definitions of periodic points for nonautonomous dynamical system
    Pravec, Vojtech
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2019, 25 (9-10) : 1372 - 1381
  • [5] S-integer dynamical systems:: periodic points
    Chothi, V
    Everest, G
    Ward, T
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1997, 489 : 99 - 132
  • [6] Counting Periodic Points in Parallel Graph Dynamical Systems
    Aledo, Juan A.
    Barzanouni, Ali
    Malekbala, Ghazaleh
    Sharifan, Leila
    Valverde, Jose C.
    COMPLEXITY, 2020, 2020
  • [7] MULTIPLICITIES OF POINTS ON A SCHUBERT VARIETY
    LAKSHMIBAI, V
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (02): : 215 - 218
  • [8] Embedding topological dynamical systems with periodic points in cubical shifts
    Gutman, Yonatan
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 : 512 - 538
  • [9] Periodic points, linearizing maps, and the dynamical Mordell-Lang problem
    Ghioca, D.
    Tucker, T. J.
    JOURNAL OF NUMBER THEORY, 2009, 129 (06) : 1392 - 1403
  • [10] Weakly Almost Periodic Points and Some Chaotic Properties of Dynamical Systems
    Yin, Jiandong
    Zhou, Zuoling
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (09):