ASYMPTOTICS AND CONFIDENCE ESTIMATION IN SEGMENTED REGRESSION MODELS

被引:0
|
作者
Robinson, R. A. [1 ]
Gill, R. S. [1 ]
机构
[1] Univ Louisville, Dept Math, Louisville, KY 40292 USA
关键词
segmented regression; confidence estimation; change points;
D O I
10.17654/ADASMay2015_125_151
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider confidence estimation methods for the change point parameter in a clustered segmented regression model with a continuity constraint using least squares estimators of the model parameters. The asymptotic properties of the estimators are first derived, and then these properties are used to demonstrate that the confidence estimation methods have the correct coverage probability. Finally, the performance of the methods is compared by simulation and the methods are applied to a real data example.
引用
收藏
页码:125 / 151
页数:27
相关论文
共 50 条
  • [1] ESTIMATION OF SEGMENTED REGRESSION-MODELS IN THE PRESENCE OF MEASUREMENT ERROR
    GBUR, EE
    DAHM, PF
    BIOMETRICS, 1982, 38 (04) : 1117 - 1117
  • [2] Local asymptotics for regression splines and confidence regions
    Zhou, S
    Shen, X
    Wolfe, DA
    ANNALS OF STATISTICS, 1998, 26 (05): : 1760 - 1782
  • [3] Robust estimation and confidence interval in meta-regression models
    Yu, Dalei
    Ding, Chang
    He, Na
    Wang, Ruiwu
    Zhou, Xiaohua
    Shi, Lei
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 129 : 93 - 118
  • [4] Asymptotics of Ridge Regression in Convolutional Models
    Sahraee-Ardakan, Mojtaba
    Mai, Tung
    Rao, Anup
    Rossi, Ryan
    Rangan, Sundeep
    Fletcher, Alyson K.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [5] Comparability of segmented line regression models
    Kim, HJ
    Fay, MP
    Yu, BB
    Barrett, MJ
    Feuer, EJ
    BIOMETRICS, 2004, 60 (04) : 1005 - 1014
  • [6] BILINEAR REGRESSION AND CONFIDENCE-LIMITS FOR SEGMENTED TITRATION CURVES
    FORINA, MG
    ARMANINO, C
    ANNALI DI CHIMICA, 1978, 68 (3-4) : 195 - 216
  • [7] Simultaneous confidence band for the difference of segmented linear models
    Yothers, Greg
    Sampson, Allan R.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (02) : 1059 - 1068
  • [8] Asymptotics for Regression Models Under Loss of Identifiability
    Rynkiewicz J.
    Sankhya A, 2016, 78 (2): : 155 - 179
  • [9] Asymptotics for EBLUPs: Nested Error Regression Models
    Lyu, Ziyang
    Welsh, A. H.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 2028 - 2042
  • [10] Asymptotics for Regression Models Under Loss of Identifiability
    Rynkiewicz, Joseph
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2016, 78 (02): : 155 - 179