LEARNING AND GENERALIZATION CHARACTERISTICS OF THE RANDOM VECTOR FUNCTIONAL-LINK NET

被引:838
|
作者
PAO, YH [1 ]
PARK, GH [1 ]
SOBAJIC, DJ [1 ]
机构
[1] CASE WESTERN RESERVE UNIV,CLEVELAND,OH 44106
关键词
NEURAL NET; FUNCTIONAL-LINK NET; FUNCTIONAL MAPPING; GENERALIZED DELTA RULE; AUTO-ENHANCEMENT; OVERTRAINING AND GENERALIZATION;
D O I
10.1016/0925-2312(94)90053-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we explore and discuss the learning and generalization characteristics of the random vector version of the Functional-link net and compare these with those attainable with the GDR algorithm. This is done for a well-behaved deterministic function and for real-world data. It seems that 'overtraining' occurs for stochastic mappings. Otherwise there is saturation of training.
引用
收藏
页码:163 / 180
页数:18
相关论文
共 50 条
  • [1] Distributed learning for Random Vector Functional-Link networks
    Scardapane, Simone
    Wang, Dianhui
    Panella, Massimo
    Uncini, Aurelio
    INFORMATION SCIENCES, 2015, 301 : 271 - 284
  • [2] A new learning paradigm for random vector functional-link network: RVFL
    Zhang, Peng-Bo
    Yang, Zhi-Xin
    NEURAL NETWORKS, 2020, 122 : 94 - 105
  • [3] Online Label Distribution Learning Using Random Vector Functional-Link Network
    Huang, Jintao
    Vong, Chi-Man
    Qian, Wenbin
    Huang, Qin
    Zhou, Yimin
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (04): : 1177 - 1190
  • [4] A Comparison of Consensus Strategies for Distributed Learning of Random Vector Functional-Link Networks
    Fierimonte, Roberto
    Scardapane, Simone
    Panella, Massimo
    Uncini, Aurelio
    ADVANCES IN NEURAL NETWORKS: COMPUTATIONAL INTELLIGENCE FOR ICT, 2016, 54 : 143 - 152
  • [5] THE FUNCTIONAL-LINK NET AND LEARNING OPTIMAL-CONTROL
    PAO, YH
    PHILLIPS, SM
    NEUROCOMPUTING, 1995, 9 (02) : 149 - 164
  • [6] Learning from Distributed Data Sources using Random Vector Functional-Link Networks
    Scardapane, Simone
    Panella, Massimo
    Comminiello, Danilo
    Uncini, Aurelio
    INNS CONFERENCE ON BIG DATA 2015 PROGRAM, 2015, 53 : 468 - 477
  • [7] Incremental learning paradigm with privileged information for random vector functional-link networks: IRVFL
    Dai, Wei
    Ao, Yanshuang
    Zhou, Linna
    Zhou, Ping
    Wang, Xuesong
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (09): : 6847 - 6859
  • [8] Fuzziness based Random Vector Functional-link Network for Semi-supervised Learning
    Cao, Weipeng
    Gao, Jinzhu
    Ming, Zhong
    Cai, Shubin
    Shan, Zhiguang
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 782 - 786
  • [9] A TRAINING PROCEDURE FOR QUANTUM RANDOM VECTOR FUNCTIONAL-LINK NETWORKS
    Panella, Massimo
    Rosato, Antonello
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7973 - 7977
  • [10] Hardware implementation methods in Random Vector Functional-Link Networks
    José M. Martínez-Villena
    Alfredo Rosado-Muñoz
    Emilio Soria-Olivas
    Applied Intelligence, 2014, 41 : 184 - 195