A NEW APPROACH TO SPLINE FUNCTIONS

被引:1
|
作者
BEHFOROOZ, GH
机构
[1] Department of Mathematics, Utica College, Syracuse University, Utica
关键词
APPROXIMATION; END CONDITIONS; END-POINTS; INTERPOLATION; CUBIC SPLINE; QUINTIC SPLINE; KNOT; ORDER OF CONVERGENCE;
D O I
10.1016/0168-9274(93)90001-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that the values of the integral of the function y = y(x) are known on the end subintervals of the spline interval [a, b]. By employing these values, the required end conditions for the cubic and quintic interpolatory splines will be derived. The order of convergence of the interpolatory splines with these end conditions are O(h(4)) for the cubic spline, and O(h(6)) for the quintic spline.
引用
收藏
页码:271 / 276
页数:6
相关论文
共 50 条
  • [1] NEW BOUNDS ON THE ZEROS OF SPLINE FUNCTIONS
    GOODMAN, TNT
    JOURNAL OF APPROXIMATION THEORY, 1994, 76 (01) : 123 - 130
  • [2] New spline basis functions for sampling approximations
    Ueno, Toshihide
    Truscott, Simon
    Okada, Masami
    NUMERICAL ALGORITHMS, 2007, 45 (1-4) : 283 - 293
  • [3] New spline basis functions for sampling approximations
    Toshihide Ueno
    Simon Truscott
    Masami Okada
    Numerical Algorithms, 2007, 45 : 283 - 293
  • [4] A Constructive Approach to Bivariate Hyperbolic Box Spline Functions
    Jena, H.
    ARMENIAN JOURNAL OF MATHEMATICS, 2025, 17 (01): : 1 - 18
  • [6] A new spline approach for data fitting
    Nunhez, JR
    Costa, CBB
    Guirardello, R
    FLUID PHASE EQUILIBRIA, 2004, 220 (02) : 171 - 180
  • [7] NEW OPTIMIZED SPLINE FUNCTIONS FOR INTERPOLATION ON THE HEXAGONAL LATTICE
    Condat, Laurent
    Van De Ville, Dimitri
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 1256 - 1259
  • [8] SPLINE FUNCTIONS, A NEW TOOL IN DATA-ANALYSIS
    WOLD, S
    KEMISK TIDSKRIFT, 1972, 84 (03): : 34 - &
  • [9] Simple approach to the basic functions for B-spline curves
    Van To, T
    INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS, AND TECHNOLOGY, PROCEEDINGS, 1999, : 6 - 11
  • [10] New Infinitely Differentiable Spline-like Basis Functions
    Konovalov, Ya. Yu.
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 114 - 122