FAVARD THEOREM FOR REPRODUCING KERNELS

被引:2
|
作者
BULTHEEL, A
GONZALEZVERA, P
HENDRIKSEN, E
NJASTAD, O
机构
[1] KATHOLIEKE UNIV LEUVEN, DEPT COMP SCI, B-3001 LOUVAIN, BELGIUM
[2] UNIV LA LAGUNA, DEPT MATH ANAL, TENERIFE, SPAIN
[3] UNIV AMSTERDAM, DEPT MATH, AMSTERDAM, NETHERLANDS
[4] UNIV TRONDHEIM, NTH, DEPT MATH, N-7034 TRONDHEIM, NORWAY
关键词
ORTHOGONAL RATIONAL FUNCTIONS; FAVARD THEOREM; REPRODUCING KERNEL;
D O I
10.1016/0377-0427(93)E0234-D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider for n = 0, 1, ... the nested spaces L(n), of rational functions of degree n at most with given poles 1/<(alpha)over bar>(i), \alpha(i)\ < 1, i = 1,..., n. Let L = boolean OR(0)(infinity) L(n). Given a finite positive measure mu on the unit circle, we associate with it an inner product on L by (f,g) = integral f (g) over bar d mu. Suppose k(n)(z, w) is the reproducing kernel for L(n), i.e., [f(z), k(n)(z, w)] = f(w), for all f is an element of L(n), \w\ < 1, then it is known that they satisfy a coupled recurrence relation. In this paper we shall prove a Favard type theorem which says that if you have a sequence of kernel functions k(n)(z, w) which are generated by such a recurrence, then there will be a measure mu supported on the unit circle so that k(n) is the reproducing kernel for L(n). The measure is unique under certain extra conditions on the points alpha(i).
引用
收藏
页码:57 / 76
页数:20
相关论文
共 50 条
  • [1] GENERALIZATION OF MERCERS THEOREM AND APPLICATIONS TO REPRODUCING KERNELS
    TUCKER, W
    ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (04): : 1483 - &
  • [2] On the norms of Favard Kernels
    Subbotin, Yu. N.
    Telyakovskii, S. A.
    MATHEMATICAL NOTES, 2015, 97 (3-4) : 598 - 604
  • [3] On the norms of Favard Kernels
    Yu. N. Subbotin
    S. A. Telyakovskii
    Mathematical Notes, 2015, 97 : 598 - 604
  • [4] On a theorem of Favard
    Hu, ZS
    Mingarelli, AB
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (02) : 417 - 428
  • [5] On Hardy kernels as reproducing kernels
    Oliva-Maza, Jesus
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (02): : 428 - 442
  • [6] A Fundamental Theorem on Initial Value Problems by Using the Theory of Reproducing Kernels
    Castro, L. P.
    Rodrigues, M. M.
    Saitoh, S.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (01) : 87 - 98
  • [7] A Fundamental Theorem on Initial Value Problems by Using the Theory of Reproducing Kernels
    L. P. Castro
    M. M. Rodrigues
    S. Saitoh
    Complex Analysis and Operator Theory, 2015, 9 : 87 - 98
  • [8] On the `Favard theorem' and its extensions
    Marcellán, Francisco
    Álvarez-Nodarse, Renato
    Journal of Computational and Applied Mathematics, 2001, 127 (1-2) : 231 - 254
  • [9] REPRODUCING KERNELS, FUNDAMENTAL KERNELS AND RESOLVENT KERNELS
    STORK, W
    MATHEMATICA SCANDINAVICA, 1977, 40 (01) : 51 - 68
  • [10] A FAVARD THEOREM FOR RATIONAL FUNCTIONS
    HENDRIKSEN, E
    NJASTAD, O
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 142 (02) : 508 - 520