Aim: To establish intensity-modulated radiotherapy (IMRT) planning procedures that spare the corticospinal tract by integrating diffusion tensor tractography into the treatment planning software. Background: Organs at risk are generally contoured according to the outline of the organ as demonstrated by CT or MRI. But a part of the organ with specific function is difficult to protect, because such functional part of the organ cannot be delineated on CT or conventional sequence of MRI. Methods: Diagnostic and treatment planning images of glioblastoma patients who had been treated by conventional 3-dimensional conformal radiotherapy were used for re-planning of IMRT. Three-dimensional fiber maps of the corticospinal tracts were created from the diffusion tensors obtained from the patients before the surgery, and were blended with the anatomical MR images (i.e. gadolinium-enhanced T1-weighted images or T2-weighted images). DICOM-formatted blended images were transferred and fused to the planning CT images. Then, IMRT plans were attempted. Results: The corticospinal tracts could be contoured as organs at risk (OARs), because the blended images contained both anatomical information and fiber-tract maps. Other OARs were contoured in a way similar to that of ordinary IMRT planning. Gross tumor volumes, clinical target volumes, planning target volumes, and other OARs were contoured on the treatment planning software, and IMRT plans were made. Conclusions: IMRT plans with diminished doses to the corticospinal tract were attained. This technique enabled us to spare specific neuron fibers as OARs which were formerly "invisible" and to reduce the probability of late morbidities. (C) 2014 Greater Poland Cancer Centre. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.