SOLUTION OF THE KNIGHTS HAMILTONIAN PATH PROBLEM ON CHESSBOARDS

被引:21
|
作者
CONRAD, A [1 ]
HINDRICHS, T [1 ]
MORSY, H [1 ]
WEGENER, I [1 ]
机构
[1] UNIV DORTMUND,FACHBEREICH INFORMAT,LS 2,POSTFACH 500500,W-4600 DORTMUND 50,GERMANY
关键词
D O I
10.1016/0166-218X(92)00170-Q
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Is it possible for a knight to visit all squares of an n x n chessboard on an admissible path exactly once? The answer is yes ff and only if n greater-than-or-equal-to 5. The kth position in such a path can be computed with a constant number of arithmetic operations. A Hamiltonian path from a given source s to a given terminal t exists for n greater-than-or-equal-to 6 if and only if some easily testable color criterion is fulfilled. Hamiltonian circuits exist if and only if n greater-than-or-equal-to 6 and n is even.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 50 条
  • [1] A new light-based solution to the Hamiltonian path problem
    Sartakhti, Javad Salimi
    Jalili, Saeed
    Rudi, Ali Gholami
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2013, 29 (02): : 520 - 527
  • [2] PROBLEM OF ARRANGEMENTS ON CHESSBOARDS AND GENERALIZATIONS
    CHARALAMBIDES, CA
    DISCRETE MATHEMATICS, 1979, 27 (02) : 179 - 186
  • [3] DNA computing the Hamiltonian path problem
    Lee, CM
    Kim, SW
    Kim, SM
    Sohn, U
    MOLECULES AND CELLS, 1999, 9 (05) : 464 - 469
  • [4] Metaheuristics for the Asymmetric Hamiltonian Path Problem
    Pedroso, Joao Pedro
    NUMERICAL METHODS AND APPLICATIONS, 2011, 6046 : 272 - 279
  • [5] Nanopore decoding for a Hamiltonian path problem
    Takiguchi, Sotaro
    Kawano, Ryuji
    NANOSCALE, 2021, 13 (12) : 6192 - 6200
  • [6] INCLUSION AND EXCLUSION ALGORITHM FOR THE HAMILTONIAN PATH PROBLEM
    BAX, ET
    INFORMATION PROCESSING LETTERS, 1993, 47 (04) : 203 - 207
  • [7] EXPECTED COMPUTATION TIME FOR HAMILTONIAN PATH PROBLEM
    GUREVICH, Y
    SHELAH, S
    SIAM JOURNAL ON COMPUTING, 1987, 16 (03) : 486 - 502
  • [8] A SUCCESSFUL ALGORITHM FOR THE UNDIRECTED HAMILTONIAN PATH PROBLEM
    THOMPSON, GL
    SINGHAL, S
    DISCRETE APPLIED MATHEMATICS, 1985, 10 (02) : 179 - 195
  • [9] Solving a Hamiltonian Path problem with a bacterial computer
    Baumgardner J.
    Acker K.
    Adefuye O.
    Crowley S.T.
    DeLoache W.
    Dickson J.O.
    Heard L.
    Martens A.T.
    Morton N.
    Ritter M.
    Shoecraft A.
    Treece J.
    Unzicker M.
    Valencia A.
    Waters M.
    Malcolm A.M.
    Heyer L.J.
    Poet J.L.
    Eckdahl T.T.
    Journal of Biological Engineering, 3 (1)
  • [10] The rook problem on saw-toothed chessboards
    Chen, Hon-Chan
    Ho, Ring-Yem
    APPLIED MATHEMATICS LETTERS, 2008, 21 (12) : 1234 - 1237