Transcriptional profiles of valvular interstitial cells cultured on tissue culture polystyrene, on 2D hydrogels, or within 3D hydrogels

被引:3
|
作者
Mabry, Kelly M. [1 ]
Payne, Samuel Z. [1 ]
Anseth, Kristi S. [1 ,2 ,3 ]
机构
[1] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[2] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA
[3] Univ Colorado, BioFrontiers Inst, Boulder, CO 80309 USA
来源
DATA IN BRIEF | 2015年 / 5卷
关键词
D O I
10.1016/j.dib.2015.11.017
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Valvular interstitial cells (VICs) actively maintain and repair heart valve tissue; however, persistent activation of VICs to a myofibro-blast phenotype can lead to aortic stenosis (Chen and Simmons, 2011) [1]. To better understand and quantify how microenvironmental cues influence VIC phenotype, we compared expression profiles of VICs cultured on/in poly(ethylene glycol) (PEG) gels to those cultured on tissue culture polystyrene (TCPS), as well as fresh isolates. Here, we present both the raw and processed microarray data from these culture conditions. Interpretation of this data can be found in a research article entitled "Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype" (Mabry et al., 2015) [2]. (C) 2015 The Authors. Published by Elsevier Inc.
引用
收藏
页码:959 / 962
页数:4
相关论文
共 50 条
  • [1] Collagen networks within 3D PEG hydrogels support valvular interstitial cell matrix mineralization
    Schroeder, Megan E.
    Rodriguez, Andrea Gonzalez
    Speckl, Kelly F.
    Walker, Cierra J.
    Midekssa, Firaol S.
    Grim, Joseph C.
    Weiss, Robert M.
    Anseth, Kristi S.
    ACTA BIOMATERIALIA, 2021, 119 : 197 - 210
  • [2] 2D and 3D Self-Assembling Nanofiber Hydrogels for Cardiomyocyte Culture
    Ikonen, Liisa
    Kerkela, Erja
    Metselaar, Gerald
    Stuart, Marc C. A.
    de Jong, Menno R.
    Aalto-Setala, Katriina
    BIOMED RESEARCH INTERNATIONAL, 2013, 2013
  • [3] 3D bioprinting for tissue engineering: Stem cells in hydrogels
    Mehrban, Nazia
    Teoh, Gui Zhen
    Birchall, Martin Anthony
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2016, 2 (01): : 6 - 19
  • [4] Bioinspired Hydrogels for 3D Organoid Culture
    Blondel, Delphine
    Lutolf, Matthias P.
    CHIMIA, 2019, 73 (1-2) : 81 - 85
  • [5] Viscoelastic hydrogels for 3D cell culture
    Chaudhuri, Ovijit
    BIOMATERIALS SCIENCE, 2017, 5 (08) : 1480 - 1490
  • [6] Exploiting Meltable Protein Hydrogels to Encapsulate and Culture Cells in 3D
    Dura, Gema
    Crespo-Cuadrado, Maria
    Waller, Helen
    Peters, Daniel T.
    Ferreira-Duarte, Ana
    Lakey, Jeremy H.
    Fulton, David A.
    MACROMOLECULAR BIOSCIENCE, 2022, 22 (09)
  • [7] Bridging 2D and 3D culture: Probing impact of extracellular environment on fibroblast activation in layered hydrogels
    Smithmyer, Megan E.
    Cassel, Samantha E.
    Kloxin, April M.
    AICHE JOURNAL, 2019, 65 (12)
  • [8] Bioactive physical hydrogels for 3D cell culture
    Liu, Bo
    Shen, Wei
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [9] Biodegradable Hydrogels Loaded with Magnetically Responsive Microspheres as 2D and 3D Scaffolds
    Carvalho, Estela O.
    Ribeiro, Clarisse
    Correia, Daniela M.
    Botelho, Gabriela
    Lanceros-Mendez, Senentxu
    NANOMATERIALS, 2020, 10 (12) : 1 - 12
  • [10] Engineered Polymeric Hydrogels for 3D Tissue Models
    Park, Sujin
    Park, Kyung Min
    POLYMERS, 2016, 8 (01)