A NEW N = 4 SUPERCONFORMAL ALGEBRA

被引:9
|
作者
ALI, A
KUMAR, A
机构
关键词
D O I
10.1142/S0217732393001252
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is shown that the previously known N = 3 and N = 4 superconformal algebras can be contracted consistently by singular scaling of some of the generators. For the latter case, by a contraction which depends on the central term, we obtain a new N = 4 superconformal algebra which contains an SU(2) X U(1)4 Kac-Moody subalgebra and has nonzero central extension.
引用
收藏
页码:1527 / 1532
页数:6
相关论文
共 50 条
  • [1] A new N=6 superconformal algebra
    Cheng, SJ
    Kac, VG
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (01) : 219 - 231
  • [2] The large N=4 superconformal W∞ algebra
    Beccaria, Matteo
    Candu, Constantin
    Gaberdiel, Matthias R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06):
  • [3] The small N=4 superconformal W∞ algebra
    Ahn, Changhyun
    Gaberdiel, Matthias R.
    Kim, Man Hea
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (39)
  • [4] UNITARY REPRESENTATIONS OF THE N=4 SUPERCONFORMAL ALGEBRA
    EGUCHI, T
    TAORMINA, A
    PHYSICS LETTERS B, 1987, 196 (01) : 75 - 81
  • [5] CHARACTER FORMULAS FOR THE N = 4 SUPERCONFORMAL ALGEBRA
    EGUCHI, T
    TAORMINA, A
    PHYSICS LETTERS B, 1988, 200 (03) : 315 - 322
  • [6] BRST OPERATOR FOR THE LARGE N=4 SUPERCONFORMAL ALGEBRA
    BASTIANELLI, F
    OHTA, N
    PHYSICAL REVIEW D, 1994, 50 (06): : 4051 - 4059
  • [7] Young supertableaux and the large N=4 superconformal algebra
    Fearn, Sam
    PHYSICA SCRIPTA, 2019, 94 (12)
  • [8] N=4 superconformal algebra and the entropy of hyperKahler manifolds
    Eguchi, Tohru
    Hikami, Kazuhiro
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (02):
  • [9] S-duality for the Large N = 4 Superconformal Algebra
    Thomas Creutzig
    Davide Gaiotto
    Andrew R. Linshaw
    Communications in Mathematical Physics, 2020, 374 : 1787 - 1808
  • [10] S-duality for the Large N=4 Superconformal Algebra
    Creutzig, Thomas
    Gaiotto, Davide
    Linshaw, Andrew R.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 374 (03) : 1787 - 1808