EIGENVALUE PROBLEMS FOR ANISOTROPIC EQUATIONS INVOLVING A POTENTIAL ON ORLICZ-SOBOLEV TYPE SPACES

被引:12
|
作者
Stancut, Ionela-Loredana [1 ]
Stircu, Iulia Dorotheea [1 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
关键词
anisotropic Orlicz-Sobolev space; potential; critical point; weak solution; eigenvalue;
D O I
10.7494/OpMath.2016.36.1.81
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider an eigenvalue problem that involves a nonhomogeneous elliptic operator, variable growth conditions and a potential V on a bounded domain in R-N (N >= 3) with a smooth boundary. We establish three main results with various assumptions. The first one asserts that any lambda > 0 is an eigenvalue of our problem. The second theorem states the existence of a constant lambda(*) > 0 such that any lambda is an element of (0, lambda(*)] is an eigenvalue, while the third theorem claims the existence of a constant lambda* > 0 such that every lambda is an element of [lambda*, infinity) is an eigenvalue of the problem.
引用
收藏
页码:81 / 101
页数:21
相关论文
共 50 条
  • [1] Eigenvalue problems in anisotropic Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Morosanu, Gheorghe
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) : 521 - 526
  • [2] Eigenvalue problems for anisotropic elliptic equations: An Orlicz-Sobolev space setting
    Mihailescu, Mihai
    Morosanu, Gheorghe
    Radulescu, Vicentiu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) : 3239 - 3253
  • [3] HOMOGENEOUS EIGENVALUE PROBLEMS IN ORLICZ-SOBOLEV SPACES
    Bonder, Julian Fernandez
    Salort, Ariel
    Vivas, Hernan
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 63 (02) : 429 - 453
  • [4] EIGENVALUE PROBLEMS FOR A CLASS OF BI-NONLOCAL EQUATIONS IN ORLICZ-SOBOLEV SPACES
    Nguyen Thanh Chung
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2020, 2020
  • [5] On some nonlinear elliptic problems in anisotropic Orlicz-Sobolev spaces
    Elarabi, Rabab
    Lahmi, Badr
    Ouyahya, Hakima
    ADVANCES IN OPERATOR THEORY, 2023, 8 (02)
  • [6] On a nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Gossez, JP
    Manásevich, R
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 : 891 - 909
  • [7] Eigenvalue problems associated with nonhomogeneous differential operators in Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Radulescu, Vicentiu
    ANALYSIS AND APPLICATIONS, 2008, 6 (01) : 83 - 98
  • [8] The limiting Behavior of Solutions to Inhomogeneous Eigenvalue Problems in Orlicz-Sobolev Spaces
    Bocea, Marian
    Mihailescu, Mihai
    Stancu-Dumitru, Denisa
    ADVANCED NONLINEAR STUDIES, 2014, 14 (04) : 977 - 990
  • [9] Imbeddings of anisotropic Orlicz-Sobolev spaces and applications
    Jain, P
    Lukkassen, D
    Persson, LE
    Svanstedt, N
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2002, 5 (02): : 181 - 195
  • [10] Anisotropic Orlicz-Sobolev spaces of vector valued functions and Lagrange equations
    Chmara, M.
    Maksymiuk, J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 456 (01) : 457 - 475