Robust reconstruction of single-cell RNA-seq data with iterative gene weight updates

被引:0
作者
Sheng, Yueqi [1 ]
Barak, Boaz [1 ]
Nitzan, Mor [2 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Boston, MA 02134 USA
[2] Hebrew Univ Jerusalem, Racah Inst Phys, Fac Med, Sch Comp Sci & Engn, I-9190401 Jerusalem, Israel
基金
以色列科学基金会;
关键词
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Single-cell RNA-sequencing technologies have greatly enhanced our understanding of heterogeneous cell populations and underlying regulatory processes. However, structural (spatial or temporal) relations between cells are lost during cell dissociation. These relations are crucial for identifying associated biological processes. Many existing tissue-reconstruction algorithms use prior information about subsets of genes that are informative with respect to the structure or process to be reconstructed. When such information is not available, and in the general case when the input genes code for multiple processes, including being susceptible to noise, biological reconstruction is often computationally challenging. Results We propose an algorithm that iteratively identifies manifold-informative genes using existing reconstruction algorithms for single-cell RNA-seq data as subroutine. We show that our algorithm improves the quality of tissue reconstruction for diverse synthetic and real scRNA-seq data, including data from the mammalian intestinal epithelium and liver lobules. Availability and implementation The code and data for benchmarking are available at github.com/syq2012/iterative_weight_update_for_reconstruction.
引用
收藏
页码:I423 / I430
页数:8
相关论文
共 16 条
  • [1] Exploring single-cell data with deep multitasking neural networks
    Amodio, Matthew
    van Dijk, David
    Srinivasan, Krishnan
    Chen, William S.
    Mohsen, Hussein
    Moon, Kevin R.
    Campbell, Allison
    Zhao, Yujiao
    Wang, Xiaomei
    Venkataswamy, Manjunatha
    Desai, Anita
    Ravi, V.
    Kumar, Priti
    Montgomery, Ruth
    Wolf, Guy
    Krishnaswamy, Smita
    [J]. NATURE METHODS, 2019, 16 (11) : 1139 - +
  • [2] Arora S, 2012, THEORY COMPUT, V8, P121, DOI DOI 10.4086/TOC.2012.V008A006
  • [3] Space-time logic of liver gene expression at sub-lobular scale
    Droin, Colas
    El Kholtei, Jakob
    Halpern, Keren Bahar
    Hurni, Clemence
    Rozenberg, Milena
    Muvkadi, Sapir
    Itzkovitz, Shalev
    Naef, Felix
    [J]. NATURE METABOLISM, 2021, 3 (01) : 43 - +
  • [4] Single-cell RNA-seq denoising using a deep count autoencoder
    Eraslan, Goekcen
    Simon, Lukas M.
    Mircea, Maria
    Mueller, Nikola S.
    Theis, Fabian J.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [5] Kale S., 2007, ELECT C COMPUT COMPL, V14, P131
  • [6] Mages S., 2023, NAT BIOTECHNOL, V16, P1
  • [7] Spatial Reconstruction of Single Enterocytes Uncovers Broad Zonation along the Intestinal Villus Axis
    Moor, Andreas E.
    Harnik, Yotam
    Ben-Moshe, Shani
    Massasa, Efi E.
    Rozenberg, Milena
    Eilam, Raya
    Halpern, Keren Bahar
    Itzkovitz, Shalev
    [J]. CELL, 2018, 175 (04) : 1156 - +
  • [8] NovoSpaRc: flexible spatial reconstruction of single-cell gene expression with optimal transport
    Moriel, Noa
    Senel, Enes
    Friedman, Nir
    Rajewsky, Nikolaus
    Karaiskos, Nikos
    Nitzan, Mor
    [J]. NATURE PROTOCOLS, 2021, 16 (09) : 4177 - 4200
  • [9] Gene expression cartography
    Nitzan, Mor
    Karaiskos, Nikos
    Friedman, Nir
    Rajewsky, Nikolaus
    [J]. NATURE, 2019, 576 (7785) : 132 - +
  • [10] Single-cell RNA sequencing for the study of development, physiology and disease
    Potter, S. Steven
    [J]. NATURE REVIEWS NEPHROLOGY, 2018, 14 (08) : 479 - 492