CALIBRATION FOR INVERSE GAUSSIAN REGRESSION

被引:4
|
作者
WOLDIE, M
FOLKS, JL
机构
[1] TEXAS SO UNIV,HOUSTON,TX 77004
[2] OKLAHOMA STATE UNIV,STILLWATER,OK 74078
关键词
REGRESSION; ZERO INTERCEPT; NONCONSTANT VARIANCE; PREDICTION INTERVAL; CALIBRATION;
D O I
10.1080/03610929508831636
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Inverse Gaussian regression models are useful for regression data where both variables are nonnegative and the variance of the dependent variable depends on the independent variable. Zero intercept inverse Gaussian regression models are presented with non-constant variance, constant ratio of variance to the mean and constant coefficient of variation. For purposes of calibration, the prediction band is used to give point and interval estimators for the independent variable. The results illustrated with a real data set.
引用
收藏
页码:2609 / 2620
页数:12
相关论文
共 50 条
  • [1] Asymptotics and bootstrap for inverse Gaussian regression
    Babu, GJ
    Chaubey, YP
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1996, 48 (01) : 75 - 88
  • [2] ON A CONJECTURE CONCERNING INVERSE GAUSSIAN REGRESSION
    LETAC, G
    SESHADRI, V
    INTERNATIONAL STATISTICAL REVIEW, 1986, 54 (02) : 187 - 190
  • [3] Asymptotics and boortstrap for inverse Gaussian regression
    Department of Statistics, 319 Classroom Building, Pennsylvania State University, University Park, PA 16802
    Inst Stat Math Annal, 1 (75-88):
  • [4] Gaussian Regularized Sliced Inverse Regression
    Caroline Bernard-Michel
    Laurent Gardes
    Stéphane Girard
    Statistics and Computing, 2009, 19 : 85 - 98
  • [5] Gaussian Regularized Sliced Inverse Regression
    Bernard-Michel, Caroline
    Gardes, Laurent
    Girard, Stephane
    STATISTICS AND COMPUTING, 2009, 19 (01) : 85 - 98
  • [6] CLASSICAL AND INVERSE REGRESSION METHODS OF CALIBRATION
    KRUTCHKOFF, RG
    TECHNOMETRICS, 1967, 9 (03) : 425 - +
  • [7] Improving the Efficiency of Regression Estimators in an Inverse Gaussian Regression Model
    Rintara, Pannipa
    Piladaeng, Janjira
    Ahmed, S. Ejaz
    Phukongtong, Siwaporn
    EIGHTEENTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, ICMSEM 2024, 2024, 215 : 689 - 701
  • [8] The KL estimator for the inverse Gaussian regression model
    Lukman, Adewale F.
    Algannal, Zakariya Y.
    Kibria, B. M. Golam
    Ayinde, Kayode
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (13):
  • [9] Sparse Inverse Kernel Gaussian Process Regression
    Das, Kamalika
    Srivastava, Ashok N.
    STATISTICAL ANALYSIS AND DATA MINING, 2013, 6 (03) : 205 - 220
  • [10] Diagnostic techniques for the inverse Gaussian regression model
    Amin, Muhammad
    Ullah, Muhammad Aman
    Qasim, Muhammad
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (08) : 2552 - 2564