JUSTIFICATION OF THE RENORMALIZATION-GROUP METHOD

被引:14
|
作者
KASHAPOV, IA
机构
关键词
D O I
10.1007/BF01032123
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:184 / 186
页数:3
相关论文
共 50 条
  • [1] DIAGRAMMATIC RENORMALIZATION-GROUP METHOD
    RUDNICK, J
    PHYSICAL REVIEW B, 1975, 11 (01): : 363 - 376
  • [2] The renormalization-group method in problems of mechanics
    Teodorovich, EV
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2004, 68 (02): : 299 - 326
  • [3] THE RENORMALIZATION-GROUP METHOD IN STATISTICAL HYDRODYNAMICS
    EYINK, GL
    PHYSICS OF FLUIDS, 1994, 6 (09) : 3063 - 3078
  • [4] A NEW PROPOSAL FOR THE DETERMINATION OF THE RENORMALIZATION-GROUP TRAJECTORIES BY THE MONTE-CARLO RENORMALIZATION-GROUP METHOD
    FALCIONI, M
    MARTINELLI, G
    PACIELLO, ML
    PARISI, G
    TAGLIENTI, B
    NUCLEAR PHYSICS B, 1986, 265 (01) : 187 - 196
  • [5] DLA with two species: Renormalization-group method
    Chang, Fuxuan
    Li, Houqiang
    Liu, De
    Lin, Libin
    Communications in Nonlinear Science and Numerical Simulation, 1998, 3 (04): : 199 - 203
  • [6] RENORMALIZATION-GROUP METHOD FOR VIBRATIONAL BEHAVIOR WITH DEFECTS
    SCHMELTZER, D
    PHYSICAL REVIEW B, 1982, 25 (06): : 3915 - 3926
  • [7] Alternative discretization in the numerical renormalization-group method
    Campo, VL
    Oliveira, LN
    PHYSICAL REVIEW B, 2005, 72 (10):
  • [8] RENORMALIZATION-GROUP METHOD FOR QUANTUM SPIN SYSTEMS
    MATTIS, D
    SCHILLING, R
    HELVETICA PHYSICA ACTA, 1981, 54 (02): : 334 - 334
  • [9] THE PHENOMENA OF TURBULENT TRANSPORT AND THE RENORMALIZATION-GROUP METHOD
    TEODOROVICH, EV
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1988, 52 (02): : 170 - 175
  • [10] RENORMALIZATION-GROUP METHOD FOR ANISOTROPIC TURBULENT TRANSPORT
    CARATI, D
    BRENIG, L
    PHYSICAL REVIEW A, 1989, 40 (09): : 5193 - 5198