BAYES INVARIANT QUADRATIC ESTIMATION IN GENERAL LINEAR-REGRESSION MODELS

被引:4
|
作者
GNOT, S
SRZEDNICKA, J
ZMYSLONY, R
机构
[1] AGR ACAD,DEPT MATH,PL-50357 WROCLAW,POLAND
[2] POLISH ACAD SCI,INST MATH,PL-51617 WROCLAW,POLAND
关键词
BAYES QUADRATIC ESTIMATION; VARIANCE COMPONENTS; BLOCK DESIGNS;
D O I
10.1016/0378-3758(92)90083-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the paper the general linear regression model E(y) = X-beta, Cov(y) = SIGMA(i=1)k sigma(i)2V(i); V(i) greater-than-or-equal-to 0, i = 1,2,...,k - 1, V(k) = I, is considered. For this model explicit formulae for the Bayes invariant quadratic unbiased estimators and the Bayes invariant quadratic estimators are given. These estimators are expressed in terms of a base of a Jordan algebra generated by MV1M, MV2M,...,MV(k-1)M, M, where M is the orthogonal projector on the null space of X'. Two-way classification random models corresponding to orthogonal and partially balanced block designs are considered as examples.
引用
收藏
页码:223 / 236
页数:14
相关论文
共 50 条