Random walk on half-plane half-comb structure

被引:0
|
作者
Csaki, Endre [1 ]
Csorgo, Miklos [2 ]
Foldes, Antonia [3 ]
Revesz, Pal [4 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON, Canada
[3] CUNY, Dept Math, Coll Staten Isl, New York, NY 10021 USA
[4] Tech Univ Wien, Inst Stat & Wahrscheinlichkeitstheorie, Vienna, Austria
来源
ANNALES MATHEMATICAE ET INFORMATICAE | 2012年 / 39卷
基金
加拿大自然科学与工程研究理事会;
关键词
Anisotropic random walk; Strong approximation; Wiener process; Local time; Laws of the iterated logarithm;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study limiting properties of a random walk on the plane, when we have a square lattice on the upper half-plane and a comb structure on the lower half-plane, i.e., horizontal lines below the x-axis are removed. We give strong approximations for the components with random time changed Wiener processes. As consequences, limiting distributions and some laws of the iterated logarithm are presented. Finally, a formula is given for the probability that the random walk returns to the origin in 2N steps.
引用
收藏
页码:29 / 44
页数:16
相关论文
共 50 条
  • [1] On the Local Time of the Half-Plane Half-Comb Walk
    Endre Csáki
    Antónia Földes
    Journal of Theoretical Probability, 2022, 35 : 1247 - 1261
  • [2] On the Local Time of the Half-Plane Half-Comb Walk
    Csaki, Endre
    Foldes, Antonia
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (02) : 1247 - 1261
  • [3] A NEW COMB HONEY CONCEPT - THE HALF-COMB SECTION
    HOGG, JA
    AMERICAN BEE JOURNAL, 1980, 120 (05): : 357 - 362
  • [4] On Site Percolation in Random Quadrangulations of the Half-Plane
    Bjornberg, Jakob E.
    Stefansson, Sigurdur Orn
    JOURNAL OF STATISTICAL PHYSICS, 2015, 160 (02) : 336 - 356
  • [5] On Site Percolation in Random Quadrangulations of the Half-Plane
    Jakob E. Björnberg
    Sigurdur Örn Stefánsson
    Journal of Statistical Physics, 2015, 160 : 336 - 356
  • [6] Watermelons on the half-plane
    Nurligareev, Kh D.
    Povolotsky, A. M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (01):
  • [7] Percolations on random maps I: Half-plane models
    Angel, Omer
    Curien, Nicolas
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (02): : 405 - 431
  • [8] Elastostatics of a Half-Plane under Random Boundary Excitations
    Karl Sabelfeld
    Irina Shalimova
    Journal of Statistical Physics, 2009, 137 : 521 - 537
  • [9] Elastostatics of a Half-Plane under Random Boundary Excitations
    Sabelfeld, Karl
    Shalimova, Irina
    JOURNAL OF STATISTICAL PHYSICS, 2009, 137 (03) : 521 - 537
  • [10] Scattering at the junction formed by a PEC half-plane and a half-plane with anisotropic conductivity
    Sendag, R
    Serbest, AH
    ELECTROMAGNETICS, 2001, 21 (05) : 415 - 434