STUDY OF ANALYTE DIFFUSION INTO A SILICONE-CLAD FIBEROPTIC CHEMICAL SENSOR BY EVANESCENT-WAVE SPECTROSCOPY

被引:23
|
作者
BLAIR, DS [1 ]
BURGESS, LW [1 ]
BRODSKY, AM [1 ]
机构
[1] UNIV WASHINGTON,CTR PROC ANALYT CHEM,SEATTLE,WA 98195
关键词
EVANESCENT WAVE; INFRARED SPECTROSCOPY; FIBER OPTIC; CHEMICAL SENSOR; DIFFUSION; POLYMER; POLYSILOXANE; SILICONE; POLY(DIMETHYLSILOXANE); MASS TRANSPORT; METHANOL; ETHANOL; 2-PROPANOL; N-BUTANOL; PENTANE; HEXANE; HEPTANE; CYCLOHEXANE; FICK 2ND LAW; DIFFUSION COEFFICIENT; INTERFACIAL CONDUCTANCE;
D O I
10.1366/0003702953965740
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The diffusion rates of various polar and nonpolar analytes in dimethylsiloxane were examined with the use of a commercially available 200-mu m silica-core/300-mu m silicone-clad fiber as the optical element for evanescent wave spectroscopy in the near-infrared spectral region. An analytical solution to Fick's second law was used to model the time-dependent analyte concentration at the core/cladding interface. Successful fit of the analytical solutions to infrared data verifies the assumption of constant diffusion coefficients that is necessary to solve the equation. Transport rates of polar analytes in silicone can be estimated with the use of a single-parameter model that results in diffusion coefficients of 3.2 x 10(-6), 1.6 x 10(-6), 8.1 x 10(-7), and 3.9 x 10(-7) cm(2)/s for methanol, ethanol, 2-propanol, and n-butanol, respectively. Estimating the transport of larger nonpolar analytes in the silicone cladding requires a two-parameter model that includes a diffusion coefficient and an interfacial conductance term. For pentane, hexane, heptane, and cyclohexane the resultant diffusion coefficients and interfacial conductance parameters are 6.9 x 10(-7), 4.6 x 10(-7), 4.4 x 10(-7), and 2.3 x 10(-7) cm(2)/s and 2500, 2000, 2000, and 600 mu m(-1), respectively.
引用
收藏
页码:1636 / 1645
页数:10
相关论文
共 28 条
  • [1] Study of Analyte Diffusion into a Silicone-Clad Fiber-Optic Chemical Sensor by Evanescent Wave Spectroscopy
    Blair, Dianna S.
    Burgess, Lloyd W.
    Brodsky, Anatol M.
    Applied Spectroscopy, 1995, 49 (11): : 1636 - 1645
  • [2] FIBEROPTIC EVANESCENT-WAVE SENSOR FOR GAS-DETECTION
    MESSICA, A
    GREENSTEIN, A
    KATZIR, A
    SCHIESSL, U
    TACKE, M
    OPTICS LETTERS, 1994, 19 (15) : 1167 - 1169
  • [3] A NOVEL PROBE FOR AN EVANESCENT-WAVE FIBEROPTIC ABSORPTION SENSOR
    GUPTA, BD
    TOMAR, AK
    SHARMA, A
    OPTICAL AND QUANTUM ELECTRONICS, 1995, 27 (08) : 747 - 753
  • [4] FIBEROPTIC PH SENSOR-BASED ON EVANESCENT-WAVE ABSORPTION-SPECTROSCOPY
    GE, ZF
    BROWN, CW
    SUN, LF
    YANG, SC
    ANALYTICAL CHEMISTRY, 1993, 65 (17) : 2335 - 2338
  • [5] TEMPERATURE EFFECTS ON A FIBEROPTIC EVANESCENT-WAVE ABSORPTION SENSOR
    KLUNDER, GL
    BURCK, J
    ACHE, HJ
    SILVA, RJ
    RUSSO, RE
    APPLIED SPECTROSCOPY, 1994, 48 (03) : 387 - 393
  • [6] FIBEROPTIC EVANESCENT-WAVE INFRARED-SPECTROSCOPY OF GASES IN LIQUIDS
    BUNIMOVICH, D
    BELOTSERKOVSKY, E
    KATZIR, A
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (04): : 2818 - 2820
  • [7] Distributed sensing of hydrocarbons using evanescent wave interactions in a silicone-clad optical fiber
    Burck, J
    Sensfelder, E
    Ache, HJ
    CHEMICAL, BIOCHEMICAL, AND ENVIRONMENTAL FIBER SENSORS IX, 1997, 3105 : 21 - 30
  • [8] FEASIBILITY STUDY OF A PLASTIC EVANESCENT-WAVE SENSOR
    SLOVACEK, RE
    FURLONG, SC
    LOVE, WF
    SENSORS AND ACTUATORS B-CHEMICAL, 1993, 11 (1-3) : 307 - 311
  • [9] Fiberoptic Formaldehyde Field Sensors for Industrial Environments: Capitalizing on Evanescent-Wave Spectroscopy
    Mar Darder, M.
    Serrano, Luis A.
    Moreno-Bondi, Maria C.
    Alba, Miguel A.
    Orellana, Guillermo
    SPECTROSCOPY, 2020, 35 : 25 - 29
  • [10] CHARACTERIZATION OF A FIBEROPTIC EVANESCENT-WAVE ABSORBENCY SENSOR FOR NONPOLAR ORGANIC-COMPOUNDS
    CONZEN, JP
    BURCK, J
    ACHE, HJ
    APPLIED SPECTROSCOPY, 1993, 47 (06) : 753 - 763