BIEXCITON ON A ONE-DIMENSIONAL LATTICE

被引:19
|
作者
ISHIDA, K
AOKI, H
机构
[1] UNIV TOKYO,DEPT PHYS,TOKYO 113,JAPAN
[2] OSAKA CITY UNIV,DEPT APPL PHYS,SUMIYOSHI KU,OSAKA 558,JAPAN
来源
PHYSICAL REVIEW B | 1995年 / 52卷 / 12期
关键词
D O I
10.1103/PhysRevB.52.8980
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The biexciton (excitonic molecule) is theoretically studied in a one-dimensional (1D) tight-binding model having both long-range Coulomb interactions and on-site interactions. We solve the four-fermion problem by the numerical diagonalization method for finite systems. The effect of particle correlation over the lattice-constant length scale is shown to be essential, which makes both of the conventional variational or Heitler-London approximations and the continuum models inadequate. In the phase diagram for the biexciton state, a crossover in the response to an increase in the long-range interaction is found to emerge, and occurs concomitantly with the Frenkel-Wannier crossover for single excitons. The dependence of the biexciton binding energy on the electron-hole mass ratio is also found for varying strength of the Coulomb interaction, where the behavior drastically differs from those in 2D or 3D continuum models, Two-photon absorption spectra are also obtained.
引用
收藏
页码:8980 / 8991
页数:12
相关论文
共 50 条
  • [1] Biexciton in one-dimensional Mott insulators
    Miyamoto, T.
    Kakizaki, T.
    Terashige, T.
    Hata, D.
    Yamakawa, H.
    Morimoto, T.
    Takamura, N.
    Yada, H.
    Takahashi, Y.
    Hasegawa, T.
    Matsuzaki, H.
    Tohyama, T.
    Okamoto, H.
    COMMUNICATIONS PHYSICS, 2019, 2 (1)
  • [2] Biexciton in one-dimensional Mott insulators
    T. Miyamoto
    T. Kakizaki
    T. Terashige
    D. Hata
    H. Yamakawa
    T. Morimoto
    N. Takamura
    H. Yada
    Y. Takahashi
    T. Hasegawa
    H. Matsuzaki
    T. Tohyama
    H. Okamoto
    Communications Physics, 2
  • [3] Kinematic Frenkel gap biexciton in one-dimensional structures
    Agranovich, VM
    Dubovsky, OA
    Kamchatnov, AM
    SYNTHETIC METALS, 2001, 116 (1-3) : 293 - 295
  • [4] DIFFRACTION BY A ONE-DIMENSIONAL LATTICE
    SERNA, CR
    SERNA, J
    BRU, L
    ANALES DE FISICA, 1974, 70 (02): : 163 - 165
  • [5] ON STABILITY OF A ONE-DIMENSIONAL LATTICE
    PLAKIDA, NM
    SIKLOS, T
    PHYSICS LETTERS A, 1968, A 26 (08) : 342 - &
  • [6] VIBRATIONS OF A ONE-DIMENSIONAL IONIC LATTICE
    ROSENSTOCK, HB
    PHYSICAL REVIEW, 1958, 111 (03): : 755 - 757
  • [7] One-dimensional "turbulence" in a discrete lattice
    Daumont, I
    Peyrard, M
    CHAOS, 2003, 13 (02) : 624 - 636
  • [8] DIFFUSION IN ONE-DIMENSIONAL DISORDERED LATTICE
    Hung, P. K.
    Mung, T. V.
    Hong, N. V.
    MODERN PHYSICS LETTERS B, 2012, 26 (01):
  • [9] HIERARCHICAL TRAPPING ON A ONE-DIMENSIONAL LATTICE
    Giacometti, Achille
    MODERN PHYSICS LETTERS B, 1994, 8 (06): : 399 - 405
  • [10] STRING THEORY ON THE ONE-DIMENSIONAL LATTICE
    PARISI, G
    PHYSICS LETTERS B, 1990, 238 (2-4) : 213 - 216