Identifying coherent structures in nonlinear wave propagation

被引:10
|
作者
Newman, William I. [1 ,3 ,4 ,5 ]
Campbell, David K. [1 ]
Hyman, James M. [1 ,2 ]
机构
[1] Univ Calif Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[2] Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA
[4] Univ Calif Los Angeles, Dept Astron, Los Angeles, CA 90024 USA
[5] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
关键词
D O I
10.1063/1.165813
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear wave phenomena are often characterized by the appearance of ''solitary wave coherent structures'' traveling at speeds determined by their amplitudes and morphologies. Assuming that time intervals exist in which these structures are essentially noninteracting, a method for identifying the number of independent features and their respective speeds is proposed and developed. The method is illustrated with a variety of increasingly realistic specific applications, beginning with a simple nonlinear but analytically tractable Gaussian model, continuing with (numerically generated) data describing multisoliton solutions to the Korteweg-de Vries equation, and concluding with (numerical) data from a realistic simulation of nonlinear wave interactions in plasma turbulence. These studies reveal both strengths and limitations of the method in its present incarnation and suggest topics for future investigations.
引用
收藏
页码:77 / 94
页数:18
相关论文
共 50 条
  • [1] Wave propagation in linear and nonlinear structures
    Lidorikis, E.
    Busch, K.
    Li, Qiming
    Chan, C.T.
    Soukoulis, C.M.
    Physica D: Nonlinear Phenomena, 1998, 113 (2-4): : 346 - 365
  • [2] Wave propagation in linear and nonlinear structures
    Lidorikis, E
    Busch, K
    Li, QM
    Chan, CT
    Soukoulis, CM
    PHYSICA D, 1998, 113 (2-4): : 346 - 365
  • [3] Wave propagation in nonlinear multilayer structures
    Lidorikis, E
    Li, QM
    Soukoulis, CM
    PHYSICAL REVIEW B, 1996, 54 (15): : 10249 - 10252
  • [4] NONLINEAR-WAVE PROPAGATION IN PLANAR STRUCTURES
    MIHALACHE, D
    BERTOLOTTI, M
    SIBILIA, C
    PROGRESS IN OPTICS, 1989, 27 : 227 - 313
  • [5] Nonlinear coherent structures of Alfven wave in a collisional plasma
    Jana, Sayanee
    Ghosh, Samiran
    Chakrabarti, Nikhil
    PHYSICS OF PLASMAS, 2016, 23 (07)
  • [6] Nonlinear electromagnetic wave propagation in ferroelectric integrated structures
    Krowne, CM
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1998, 17 (03) : 213 - 225
  • [7] WAVE PROPAGATION IN MEMBRANE-BASED NONLINEAR PERIODIC STRUCTURES
    Narisetti, Raj K.
    Ruzzene, Massimo
    Leamy, Michael J.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2011, VOL 1, PTS A AND B: 23RD BIENNIAL CONFERENCE ON MECHANICAL VIBRATION AND NOISE, 2012, : 213 - 220
  • [8] Highly Nonlinear Wave Propagation in Elastic Woodpile Periodic Structures
    Kim, E.
    Li, F.
    Chong, C.
    Theocharis, G.
    Yang, J.
    Kevrekidis, P. G.
    PHYSICAL REVIEW LETTERS, 2015, 114 (11)
  • [9] Nonlinear spin-wave propagation in the nonidentical magnonic structures
    Odintsov, S. A.
    Sadovnikov, A., V
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2018, 26 (06): : 59 - 67
  • [10] Nonlinear waves and coherent structures in the quantum single-wave model
    Tzenov, Stephan I.
    Marinov, Kiril B.
    PHYSICS OF PLASMAS, 2011, 18 (10)