THEORETICAL STUDY OF NON-LINEAR DAMPING BY HELMHOLTZ RESONATORS

被引:71
|
作者
ZINN, BT
机构
关键词
D O I
10.1016/S0022-460X(70)80023-2
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
引用
收藏
页码:347 / &
相关论文
共 50 条
  • [1] AN ASYMPTOTIC METHOD FOR THE ANALYSIS OF NON-LINEAR HELMHOLTZ RESONATORS
    OCHMANN, M
    ACUSTICA, 1987, 65 (01): : 11 - 20
  • [2] Inherent non-linear damping in resonators with inertia amplification
    Van Damme, B.
    Hannema, G.
    Souza, L. Sales
    Weisse, B.
    Tallarico, D.
    Bergamini, A.
    APPLIED PHYSICS LETTERS, 2021, 119 (06)
  • [3] ON THE NON-LINEAR INFLUENCE OF THE EDGE GEOMETRY ON VORTEX SHEDDING IN HELMHOLTZ RESONATORS
    Foerner, Kilian
    Temiz, Muttalip Askin
    Polifke, Wolfgang
    Arteaga, Ines Lopez
    Hirschberg, Avraham
    PROCEEDINGS OF THE 22ND INTERNATIONAL CONGRESS ON SOUND AND VIBRATION: MAJOR CHALLENGES IN ACOUSTICS, NOISE AND VIBRATION RESEARCH, 2015, 2015,
  • [4] Non-linear bubbly Helmholtz resonator
    Mallejac, Matthieu
    Payan, Cedric
    D'Hondt, Lilian
    Mensah, Serge
    Duclos, Aroune
    Cavaro, Matthieu
    APPLIED ACOUSTICS, 2022, 187
  • [5] HELMHOLTZ RESONATORS FOR DAMPING COMBUSTOR THERMOACOUSTICS
    Yang, Dong
    Morgans, Aimee S.
    PROCEEDINGS OF THE 22ND INTERNATIONAL CONGRESS ON SOUND AND VIBRATION: MAJOR CHALLENGES IN ACOUSTICS, NOISE AND VIBRATION RESEARCH, 2015, 2015,
  • [6] SOLUTIONS OF NON-LINEAR WAVE-EQUATIONS WITH NON-LINEAR DAMPING
    CESARI, L
    KANNAN, R
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1983, 8 (03) : 199 - 211
  • [7] NON-LINEAR KELVIN-HELMHOLTZ INSTABILITY
    NAYFEH, AH
    SARIC, WS
    JOURNAL OF FLUID MECHANICS, 1971, 46 (MAR29) : 209 - &
  • [8] NON-LINEAR KELVIN-HELMHOLTZ INSTABILITY
    NAYFEH, AH
    SARIC, WS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (11): : 1551 - &
  • [9] COMPUTATIONS WITH THE NON-LINEAR HELMHOLTZ-EQUATION
    KRIEGSMANN, GA
    MORAWETZ, CS
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1981, 71 (08) : 1015 - 1019
  • [10] A systematic study of linear and non-linear resonators for short electric waves.
    Nelms, WS
    Severinghaus, WL
    PHYSICAL REVIEW, 1913, 1 (06): : 429 - 445