THE LIFE-SPAN OF SMOOTH SOLUTIONS TO THE 3-DIMENSIONAL COMPRESSIBLE EULER EQUATIONS AND THE INCOMPRESSIBLE LIMIT

被引:32
|
作者
SIDERIS, TC
机构
关键词
D O I
10.1512/iumj.1991.40.40025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:535 / 550
页数:16
相关论文
共 50 条
  • [1] The Compressible to Incompressible Limit of One Dimensional Euler Equations: The Non Smooth Case
    Colombo, Rinaldo M.
    Guerra, Graziano
    Schleper, Veronika
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 219 (02) : 701 - 718
  • [2] The Compressible to Incompressible Limit of One Dimensional Euler Equations: The Non Smooth Case
    Rinaldo M. Colombo
    Graziano Guerra
    Veronika Schleper
    Archive for Rational Mechanics and Analysis, 2016, 219 : 701 - 718
  • [3] Incompressible limit of solutions of multidimensional steady compressible Euler equations
    Chen, Gui-Qiang G.
    Huang, Feimin
    Wang, Tian-Yi
    Xiang, Wei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [4] Incompressible limit of solutions of multidimensional steady compressible Euler equations
    Gui-Qiang G. Chen
    Feimin Huang
    Tian-Yi Wang
    Wei Xiang
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [5] THE COMPRESSIBLE EULER EQUATIONS IN A BOUNDED DOMAIN - EXISTENCE OF SOLUTIONS AND THE INCOMPRESSIBLE LIMIT
    SCHOCHET, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (01) : 49 - 75
  • [6] A note on incompressible limit for compressible Euler equations
    Xu, Jiang
    Yong, Wen-An
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (07) : 831 - 838
  • [7] Local smooth solutions to the 3-dimensional isentropic relativistic Euler equations
    Yongcai Geng
    Yachun Li
    Chinese Annals of Mathematics, Series B, 2014, 35 : 301 - 318
  • [8] Local smooth solutions to the 3-dimensional isentropic relativistic Euler equations
    Geng, Yongcai
    Li, Yachun
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2014, 35 (02) : 301 - 318
  • [9] Local Smooth Solutions to the 3-Dimensional Isentropic Relativistic Euler equations
    Yongcai GENG
    Yachun LI
    ChineseAnnalsofMathematics(SeriesB), 2014, 35 (02) : 301 - 318
  • [10] EVIDENCE FOR A SINGULARITY OF THE 3-DIMENSIONAL, INCOMPRESSIBLE EULER EQUATIONS
    KERR, RM
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (07): : 1725 - 1746