Chromatic Uniqueness of Certain Bipartite Graphs with Six Edges Deleted

被引:0
|
作者
Peng, Yee Hock [1 ,2 ]
Roslan, Hansi [3 ]
机构
[1] Univ Putra Malaysia, Dept Math, Upm Serdang 43400, Malaysia
[2] Univ Putra Malaysia, Inst Math Res, Upm Serdang 43400, Malaysia
[3] Univ Sains Malaysia, Sch Math, Usm Penang 11800, Malaysia
来源
THAI JOURNAL OF MATHEMATICS | 2010年 / 8卷 / 02期
关键词
Chromatic polynomial; Chromatic uniqueness; Bipartite graph;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For integers p, q, s with p >= q >= 2 and s >= 0, let K-2(-s) (p, q) denote the set of 2-connected bipartite graphs which can be obtained from K-p,K-q by deleting a set of s edges. F.M.Dong et al. (Discrete Math. vol.224 (2000) 107-124) proved that for any graph G is an element of K-2(-s) (p, q) with p >= q >= 3 and 0 <= s <= min {4, q - 1}, then G is chromatically unique. In this paper, we study the chromaticity of any graph G is an element of K-2(-s) (p, q) when p >= 6, q = 4 and s = 6.
引用
收藏
页码:339 / 354
页数:16
相关论文
共 50 条