Facile synthesis of amorphous bimetallic hydroxide on Fe-doped Ni3S2 as an active electrocatalyst for oxygen evolution reaction

被引:2
|
作者
Sang, Yan [1 ]
Ding, Gaofei [1 ]
Guo, Zixuan [1 ]
Xue, Yingying [1 ]
Li, Guohong [1 ]
Zhang, Ruoxue [1 ]
机构
[1] Anhui Normal Univ, Key Lab Electrochem Clean Energy, Coll Chem & Mat Sci,Anhui Lab Mol Based Mat, Key Lab Funct Mol Solids,Minist Educ,Anhui Higher, Wuhu 241002, Peoples R China
关键词
Composite materials; Electrodeposition; Oxygen evolution reaction; Heterojunctions; Electrocatalyst;
D O I
10.1016/j.jallcom.2022.165855
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design and synthesis of efficient and earth-abundant nonprecious metal electrocatalyst for oxygen evolution reaction (OER) plays a vital role in electrocatalytic water splitting. Here, amorphous NiFe layered double hydroxide (LDH) nanosheets deposited on Fe doped Ni3S2 nano-ridges (Fe-Ni3S2 @NiFe LDH) are successfully synthesized through a simple hydrothermal-electrodeposition method and are applied as OER electrocatalysts. In addition, benefiting from the abundant electroactive sites, electronic effect induced by Fe-doping and synergistic effect between NiFe LDH and Fe-Ni3S2, the as-prepared Fe-Ni3S2 @NiFe LDH heterogeneous catalyst can exhibit excellent OER performance in 1.0 M KOH solution. Fe-Ni3S2 @NiFe LDH only reach an overpotential of 192 mV at the current density of 10 mA cm(-2) with a Tafel slope of 43.1 mV dec(-1). Notably, as-obtained Fe-Ni3S2 @NiFe LDH electrocatalyst only requires a low overpotential of 217 mV to achieve a current density of 50 mA cm(-2). And Fe-Ni3S2 @NiFe LDH also exhibits excellent durability at 50 mA cm(-2) in 1.0 M KOH at room temperature. This study provides a feasible approach for the design of highly efficient earth-abundant nonprecious metal electrocatalysts for OER. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Facile synthesis of amorphous bimetallic hydroxide on Fe-doped Ni3S2 as an active electrocatalyst for oxygen evolution reaction
    Sang, Yan
    Ding, Gaofei
    Guo, Zixuan
    Xue, Yingying
    Li, Guohong
    Zhang, Ruoxue
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 919
  • [2] Facile Synthesis of Fe-Doped Ni3S2 Nanoparticles Supported on Ni Foam as Highly Active Electrocatalyst for Water Splitting
    Zeng, Lingyou
    Liu, Yunqi
    Liu, Chenguang
    2018 INTERNATIONAL CONFERENCE OF GREEN BUILDINGS AND ENVIRONMENTAL MANAGEMENT (GBEM 2018), 2018, 186
  • [3] Facile Synthesis of Vanadium-Doped Ni3S2 Nanowire Arrays as Active Electrocatalyst for Hydrogen Evolution Reaction
    Qu, Yuanju
    Yang, Mingyang
    Chai, Jianwei
    Tang, Zhe
    Shao, Mengmeng
    Kwok, Chi Tat
    Yang, Ming
    Wang, Zhenyu
    Chua, Daniel
    Wang, Shijie
    Lu, Zhouguang
    Pan, Hui
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (07) : 5959 - 5967
  • [4] Nanostructured Fe-Doped Ni3S2 Electrocatalyst for the Oxygen Evolution Reaction with High Stability at an Industrially-Relevant Current Density
    Zhu, Jiahui
    Chen, Wei
    Poli, Stefano
    Jiang, Tao
    Gerlach, Dominic
    Junqueira, Joao R. C.
    Stuart, Marc C. A.
    Kyriakou, Vasileios
    Figueiredo, Marta Costa
    Rudolf, Petra
    Miola, Matteo
    Morales, Dulce M.
    Pescarmona, Paolo P.
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (43) : 58520 - 58535
  • [5] Facile and scalable synthesis of Ni3S2/Fe3O4 nanoblocks as an efficient and stable electrocatalyst for oxygen evolution reaction
    Mei, Jing
    Deng, Yuqing
    Cheng, Xiaohong
    Wu, Qi
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 660 : 440 - 448
  • [6] Active-site-enriched dendritic crystal Co/Fe-doped Ni3S2 electrocatalysts for efficient oxygen evolution reaction
    Cui, Yanan
    Zhang, Chenxu
    Li, Yaxin
    Du, Zhengyan
    Wang, Chong
    Yu, Shansheng
    Tian, Hongwei
    Zheng, Weitao
    DALTON TRANSACTIONS, 2023, 52 (25) : 8747 - 8755
  • [7] Facile synthesis of Co/Fe bimetallic doped Ni3S2 nanosheets and supercapacitor performance
    Yang, Fang
    Zhang, Leshen
    Zhang, Zheng
    Dong, Wei
    JOURNAL OF ENERGY STORAGE, 2024, 104
  • [8] Facile construction of self-supported Fe-doped Ni3S2 nanoparticle arrays for the ultralow-overpotential oxygen evolution reaction
    Xie, Ning
    Ma, Dong-Dong
    Wu, Xin-Tao
    Zhu, Qi-Long
    NANOSCALE, 2021, 13 (03) : 1807 - 1812
  • [9] Facile synthesis of Ni3S2 nanosheets with abundant active sites induced by Fe incorporation on Ni foam for enhanced oxygen evolution reaction
    Zhang, Rui
    Zhu, Lin
    Lv, Weixin
    Wei, Meijie
    Wang, Lei
    Wang, Wei
    APPLIED SURFACE SCIENCE, 2023, 610
  • [10] Facile synthesis of Ni3S2 nanosheets with abundant active sites induced by Fe incorporation on Ni foam for enhanced oxygen evolution reaction
    Zhang, Rui
    Zhu, Lin
    Lv, Weixin
    Wei, Meijie
    Wang, Lei
    Wang, Wei
    APPLIED SURFACE SCIENCE, 2023, 610