DIRICHLET POLYHEDRA FOR CYCLIC GROUPS IN COMPLEX HYPERBOLIC SPACE

被引:16
|
作者
PHILLIPS, MB [1 ]
机构
[1] UNIV RICHMOND,DEPT MATH & COMP SCI,RICHMOND,VA 23173
关键词
DISCRETE GROUPS; FUNDAMENTAL DOMAIN; COMPLEX HYPERBOLIC SPACE;
D O I
10.2307/2159589
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the Dirichlet fundamental polyhedron for a cyclic group generated by a unipotent or hyperbolic element-gamma acting on complex hyperbolic n-space centered at an arbitrary point omega is bounded by the two hypersurfaces equidistant from the pairs omega, gamma-omega and omega, gamma-1 omega respectively. The proof relies on a convexity property of the distance to an isometric flow containing gamma .
引用
收藏
页码:221 / 228
页数:8
相关论文
共 50 条