TOPOLOGY OF CONTACT RIEMANNIAN MANIFOLDS

被引:156
|
作者
TANNO, S
机构
关键词
D O I
10.1215/ijm/1256053971
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:700 / &
相关论文
共 50 条
  • [1] On φ-Einstein Contact Riemannian Manifolds
    Cho, Jong Taek
    Inoguchi, Jun-ichi
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2010, 7 (02) : 143 - 167
  • [2] Spines and topology of thin Riemannian manifolds
    Alexander, SB
    Bishop, RL
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (12) : 4933 - 4954
  • [3] On the Yamabe problem on contact Riemannian manifolds
    Wang, Wei
    Wu, Feifan
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 56 (03) : 465 - 506
  • [4] A new class of contact Riemannian manifolds
    Cho, JT
    ISRAEL JOURNAL OF MATHEMATICS, 1999, 109 (1) : 299 - 318
  • [5] A new class of contact riemannian manifolds
    Jong Taek Cho
    Israel Journal of Mathematics, 1999, 109 : 299 - 318
  • [6] Geometry and Topology of Some Fibered Riemannian Manifolds
    Yakovlev E.I.
    Gonchar T.A.
    Russian Mathematics, 2018, 62 (2) : 69 - 85
  • [7] On the Yamabe problem on contact Riemannian manifolds
    Wei Wang
    Feifan Wu
    Annals of Global Analysis and Geometry, 2019, 56 : 465 - 506
  • [8] TOPOLOGY OF RIEMANNIAN MANIFOLDS WITH SMALL CURVATURE AND DIAMETER
    GROMOV, M
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A592 - A592
  • [9] The topology of quaternionic contact manifolds
    Robert K. Hladky
    Annals of Global Analysis and Geometry, 2015, 47 : 99 - 115
  • [10] Brieskorn manifolds in contact topology
    Kwon, Myeonggi
    van Koert, Otto
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2016, 48 : 173 - 241