Human diploid fibroblasts, strain MRC-5, were sequentially irradiated with Co-60 gamma-rays at intervals during their in vitro lifespan. The results indicate that 3 or 6 doses of 1 Gy can increase lifespan, and the same was true for cells treated with 3 doses of 3 Gy. Higher doses (5 x 3 Gy) did reduce growth potential, suggesting either that mid-late passage cells become more sensitive to radiation, or that doses beyond a given threshold reduce population lifespan by multiple cellular hits. The life extension induced by gamma-rays might be due to an induced hypermethylation of DNA. Alternatively, oxygen radicals produced by irradiation might trigger an adaptive stress response which would remove damaged macromolecules and thereby increase the cells' growth potential. Whichever explanation is correct, the results show that the human fibroblast system is not appropriate for the study of the well known effect of ionizing radiation in shortening the lifespan of experimental animals. Contrary to earlier published results, populations of cells treated with cumulative doses of 15 Gy or 18 Gy and held for nearly 3 months after they had reached senescence (Phase III), produced no foci of transformed cells.