VMD-CAT: A hybrid model for short-term wind power prediction

被引:0
|
作者
Zheng, Huan [1 ]
Hu, Zhenda [1 ]
Wang, Xuguang [2 ]
Ni, Junhong [2 ]
Cui, Mengqi [2 ]
机构
[1] State Grid Fujian Elect Power Co Ltd, Inst Econ & Technol, Fuzhou 350002, Peoples R China
[2] North China Elect Power Univ, Baoding 071003, Peoples R China
关键词
Wind power prediction; Correlation relationship; VMD; Transformer;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate wind power prediction is essential to optimize the wind power scheduling and maximize the profits. However, the inertia and time-varying property of the wind speed pose a challenge to the wind power prediction task. The existing prediction models fail to efficiently mitigate the negative influence of these properties on the prediction results. Therefore, their generalization abilities require a further improvement. In this paper, the historical wind power segment is decomposed into sub-signals, which are considered as the fluctuation patterns of the wind power series, the variable support then is employed to describe the inertia and time-varying properties for the fluctuation patterns. The component-attention mechanism is introduced to formulate the correlation-relationship between each fluctuation pattern and the historical wind power segment, this mechanism is used to replace the self-attention mechanism for the Transformer model. A hybrid model combined VMD and Transformer is utilized for predicting the future wind power. Experiments performed on an actual wind power series validate the efficiency of the proposed model. (c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:199 / 211
页数:13
相关论文
共 50 条
  • [1] VMD-CAT: A hybrid model for short-term wind power prediction
    Zheng, Huan
    Hu, Zhenda
    Wang, Xuguang
    Ni, Junhong
    Cui, Mengqi
    ENERGY REPORTS, 2023, 9 : 199 - 211
  • [2] Prediction of short-term wind power based on ESN improved by VMD
    Gao Xu
    Tang Zhenhao
    Han Hongzhi
    Bu Bing
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 674 - 678
  • [3] Short-term prediction of wind power generation based on VMD-GSWOA-LSTM model
    Yang, Tongguang
    Li, Wanting
    Huang, Zhiliang
    Peng, Li
    Yang, Jingyu
    AIP ADVANCES, 2023, 13 (08)
  • [4] A Hybrid Algorithm for Short-Term Wind Power Prediction
    Xiong, Zhenhua
    Chen, Yan
    Ban, Guihua
    Zhuo, Yixin
    Huang, Kui
    ENERGIES, 2022, 15 (19)
  • [5] Short-term wind power prediction based on RR-VMD-LSTM
    Shi J.
    Zhao D.
    Wang L.
    Jiang T.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2021, 49 (21): : 63 - 70
  • [6] Hybrid Forecasting Model for Short-Term Wind Power Prediction Using Modified Long Short-Term Memory
    Son, Namrye
    Yang, Seunghak
    Na, Jeongseung
    ENERGIES, 2019, 12 (20)
  • [7] Short-term PV power prediction based on VMD-CNN-IPSO-LSSVM hybrid model
    Jiang, Jianjian
    Hu, Shizhao
    Xu, Liang
    Wang, Tianlin
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2024, 19 : 1160 - 1167
  • [8] SHORT-TERM WIND POWER PREDICTION BASED ON VMD-BOA-LSSVM-AdaBoost
    Shi P.
    Wei X.
    Zhang C.
    Xie L.
    Ye J.
    Yang J.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (01): : 226 - 233
  • [9] Short-term wind power prediction of a VMD-GRU based on Bayesian optimization
    Liu X.
    Pu X.
    Li J.
    Zhang J.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2023, 51 (21): : 158 - 165
  • [10] A novel hybrid model for short-term prediction of wind speed
    Hu, Haize
    Li, Yunyi
    Zhang, Xiangping
    Fang, Mengge
    PATTERN RECOGNITION, 2022, 127