THE SQUARE-WAVE TYPE FUNCTIONS AS A LIMIT OF SOLUTIONS OF 3 MATHEMATICAL-MODELS

被引:0
|
作者
GODOY, SMS
DOSREIS, JG
机构
[1] UNIV SAO PAULO,INST CIENCIAS MAT SAO CARLOS,DEPT MATEMAT,BR-13560 SAO CARLOS,SP,BRAZIL
[2] UNIV SAO PAULO,FAC MED RIBEIRAO PRETO,BR-13560 SAO CARLOS,SP,BRAZIL
来源
MATEMATICA APLICADA E COMPUTACIONAL | 1993年 / 12卷 / 01期
关键词
DELAY DIFFERENTIAL EQUATION; SQUARE WAVE TYPE FUNCTIONS; PERIODIC SOLUTIONS; ITERATES OF MAPS; BIFURCATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Three mathematical models for biological phenomena are studied. All the models are particular cases of the delay differential equation x(t) = -lambdax(t) + lambdaf(x(t - 1)), f : R --> R, lambda > 0. It is shown that, for lambda tending to infinity, under mild conditions of f (i.e., f has a stable 2-periodic orbit), the periodic solutions of these models converge to a ''square wave'' type function whose levels are determined by the two-periodic orbit of each particular f. At the same time, as f is a function that depends on the parameters lambda is-an-element-of R+* and mu is-an-element-of R+*, it is possible to determine numerically, with calculus involving the parameters, regions of stability for the solutions when lambda and mu vary in determined regions.
引用
收藏
页码:53 / 66
页数:14
相关论文
共 50 条