POLYNOMIAL OPERATIONS - NUMERICAL PERFORMANCE IN MATRIX DIOPHANTINE EQUATION

被引:0
|
作者
KRAFFER, F
PEJCHOVA, S
SEBEK, M
机构
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In the absence of any theoretical work on polynomial operations, the paper suggests possible evaluation of particular numerical algorithms to solve linear equation in polynomial matrices and draws some: preliminary conclusions with respect to the use of polynomial operations.
引用
收藏
页码:745 / 753
页数:9
相关论文
共 50 条
  • [1] A new algorithm for the solution of a polynomial matrix Diophantine equation
    Tzekis, P. A.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 193 (02) : 395 - 407
  • [2] Unified Parametrization for the Solutions to the Polynomial Diophantine Matrix Equation and the Generalized Sylvester Matrix Equation
    Zhou, Bin
    Yan, Zhi-Bin
    Duan, Guang-Ren
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2010, 8 (01) : 29 - 35
  • [3] Unified parametrization for the solutions to the polynomial diophantine matrix equation and the generalized Sylvester matrix equation
    Bin Zhou
    Zhi-Bin Yan
    Guang-Ren Duan
    International Journal of Control, Automation and Systems, 2010, 8 : 29 - 35
  • [4] Unified Parametrization for the Solutions to the Polynomial Diophantine Matrix Equation and the Generalized Sylvester Matrix Equation
    Zhou, Bin
    Duan, Guang-Ren
    Yan, Zhi-Bin
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 4075 - 4080
  • [5] A diophantine polynomial equation
    Bateman, PT
    AMERICAN MATHEMATICAL MONTHLY, 1997, 104 (03): : 276 - 277
  • [6] Computation of the general solution of a multivariate polynomial matrix Diophantine equation
    Tzekis, P. A.
    Antoniou, E.
    Vologiannidis, S.
    2013 21ST MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2013, : 677 - 682
  • [7] Point equation of the boundary of the numerical range of a matrix polynomial
    Chien, MT
    Nakazato, H
    Psarrakos, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 347 : 205 - 217
  • [8] NUMERICAL SOLUTIONS OF DIOPHANTINE EQUATION
    LAL, M
    JONES, MF
    BLUNDON, WJ
    MATHEMATICS OF COMPUTATION, 1966, 20 (94) : 322 - &
  • [9] A DIOPHANTINE EQUATION WITH AN EXPONENTIAL MATRIX FUNCTION
    MUKHUTDI.RK
    DOKLADY AKADEMII NAUK SSSR, 1962, 142 (01): : 36 - &
  • [10] 2 POLYNOMIAL MATRIX OPERATIONS
    KRISHNARAO, IS
    CHEN, CT
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (04) : 346 - 348